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1 Maintainer's note

The reference should read1..

Schafer, J.L. (1997) Imputation of missing covariates under a multivariate
linear mixed model. Technical report 97-04, Dept. of Statistics, The Penn-
sylvania State University.

You can also refer to the following paper.

Schafer J L, Yucel RM (2002). Computational strategies for multivariate
linear mixed-e�ects models with missing values. Journal of Computational
and Graphical Statistics. 11:437-457

The marijuana data in the package is reproduced here,

Table 1: Change in heart rate recorded 15 and 90 minutes after marijuana
use, measured in beats per minute above baseline

15 minutes 90 minutes
Subject Placebo Low High Placebo Low High

1 16 20 16 20 -6 -4
2 12 24 12 -6 4 -8
3 8 8 26 -4 4 8
4 20 8 - - 20 -4
5 8 4 -8 - 22 -8
6 10 20 28 -20 -4 -4
7 4 28 24 12 8 18
8 -8 20 24 -3 8 -24
9 - 20 24 8 12 -

One can use help(ecme,package=�pan�) to see the example code.

1Note that the technical report is now available from

http://sites.stat.psu.edu/reports/1997/tr9704.pdf and brie�y described at

http://stat.psu.edu/research-old/technical-reports/archived-technical-reports



2 Technical Report

The technical report starts from next page.
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Imputation of missing covariatesunder a multivariate linear mixed modelJoseph L. Schafer �February 13, 1997
Linear mixed-e�ects models have been widely used in the analysis of longitudinal and clus-tered data. Standard �tting procedures for these models allow for imbalance due to missingresponses, but little has been done for problems of missing covariates. This article presentsa method for creating multiple imputations (Rubin, 1987) of missing covariates, allowingthe imputed data to be analyzed by current complete-data methods. The imputation pro-cedure relies on a multivariate extension of a popular linear mixed-e�ects model (Laird andWare, 1982). The multivariate model is consistent with a conditional linear mixed modelfor each covariate, with �xed e�ects for all other covariates. The technique is illustratedon a longitudinal study of adolescent substance use with large amounts of data missing bydesign.Key Words: Gibbs sampling, linear mixed-e�ects model, longitudinal data, random ef-fects, repeated measures
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1 IntroductionLet yi denote an ni � r matrix of multivariate data for sample unit i, i = 1; : : : ; m, whereeach row of yi is a joint realization of variables Y1; : : : ; Yr. Let us assume that yi follows amultivariate linear mixed model of the formyi = Xi� + Zibi + "i; (1)where Xi (ni � p) and Zi (ni � q) are known covariate matrices, � (p � r) is a matrix ofregression coe�cients common to all units (the \�xed e�ects"), and bi (q � r) is a matrixof coe�cients speci�c to unit i (the \random e�ects"). We will assume that the ni rows of"i are independently distributed as N(0;�), and that the random e�ects are distributed asbVi � N(0;	) independently for i = 1; : : : ; m. The superscript \V " indicates vectorizationof a matrix by stacking its columns. No further structure will be imposed on the covariancematrices or �xed e�ects; we will assume only that � 2 Rpr, � > 0, and 	 > 0. Withoutconditioning on b1; : : : ; bm, the model becomesy Vi � N( (Xi�)V ; (Ir 
 Zi)	(Ir 
 Zi)T + (�
 Ini) ): (2)The univariate (r = 1) version,yi � N(Xi�; Zi	ZTi + �2Ini ); (3)and more general univariate models have been extensively treated by Laird and Ware(1982); Jennrich and Schluchter (1986); Laird, Lange, and Stram (1987); Lindstrom andBates (1988); and others. Estimation procedures|both ordinary and restricted maximum-likelihood|for the univariate versions are available in major statistical packages. Thepresent article discusses inference for the multivariate version when arbitrary portions ofthe yi may be ignorably missing or missing at random, in the sense described by Rubin(1976) and Little and Rubin (1987). 2



Natural applications for model (2) include (a) analyses of multivariate longitudinal datain which a set of r variables is measured for subject i at ni occasions; and (b) analyses ofclustered multivariate cross-sectional data in which subjects are nested within groups i =1; : : : ; m of varying sizes ni. In (a), the measurements times will typically be incorporated insome fashion into Xi and Zi; because these matrices are not assumed to have any particularform, the model allows time-varying covariates and measurement times that vary by subject.In (b), Xi and Zi may contain descriptors of both the subjects and the groups to which theybelong, allowing simultaneous estimation of e�ects due to characteristics at the subject andgroup levels.In many analyses, it is natural to regard one of the variables (say Yr) as a responseand the remaining variables (Y1; : : : ; Yr�1) as potential predictors; interest is focused onthe conditional distribution of Yr given Y1; : : : ; Yr�1, and the parameters governing thejoint distribution of Y1; : : : ; Yr�1 are of little interest. Given that, multivariate models forY1; : : : ; Yr are still worth considering in many situations. One such situation is longitudinalmodeling with missing covariates. Notice that the multivariate model (2) for Y1; : : : ; Yrimplies a conditional univariate model of the form (3) for Yr, where the covariate matrixXi has been augmented to include columns for Y1; : : : ; Yr�1. When missing values occur onY1; : : : ; Yr�1, a full parametric model for Y1; : : : ; Yr provides a vehicle for inference in theconditional univariate submodel.More generally, a full multivariate model for Y1; : : : ; Yr can be quite useful when imput-ing for nonresponse in multivariate panel data. Imputation, especially multiple imputation(Rubin, 1987), has many important advantages over other methods for handling nonre-sponse. If values for the missing responses can be imputed in a statistically sound manner,the imputed dataset may be used for a variety of subsequent analyses. Many multivariateincomplete-data problems that were formerly troublesome can now be handled quite rou-tinely through model-based multiple imputation (Schafer, 1996). In a multivariate panel3



study, an imputation model should simultaneously preserve the relationships among vari-ables measured for a subject at a single point in time, and among measurements of thesame variable for a subject at di�erent points in time. Multivariate mixed-e�ects modelssuch as (2) are a natural choice, because they can e�ectively pool information within andacross panels without a massive proliferation of parameters. The assumptions of a stableresidual covariance matrix � and errors that are conditionally (given bi) independent acrosstime seems especially helpful; more general structures may be computationally troublesomeor di�cult to estimate (see Section 5). When this model is used for imputation, only thevariables to be imputed need be included among Y1; : : : ; Yr; additional covariates that arecompletely observed may be incorporated into Xi or Zi without distributional assumptions.A motivating example, to be discussed in Section 4, comes from a study of adolescentsubstance use. For a period of six years, school children received questionnaires designedto measure attitudes and behaviors regarding the use of controlled substances. Researcherswanted to examine interrelationships among three time-varying covariates: a compositemeasure of self-reported alcohol use (Y1), and measures of the perceived positive (Y2) andnegative (Y3) consequences of alcohol use. Large amounts of data were missing by design,because Y2 and Y3 were measured for at most a subsample of students in each year. Usingthe techniques described below, values for the missing items were multiply imputed, allow-ing us to subsequently �t a conventional linear growth-curve model for alcohol use giventhe perceived consequences of use.A recent paper by Liu, Taylor and Belin (1995) discussed the use of a multivariatemodel similar to (1) for imputation of missing covariates in longitudinal studies. Theirmodel was less general, however, because it imposed special structure upon Xi, Zi, and �.In particular, they assumed a diagonal form for � which is often unrealistic and undesirable.Correlations among the columns of �i can be a crucial aspect of an imputation procedure,because individual-level deviations from a norm in one variable may be highly predictive of4



deviations on another variable. Imputing under a multivariate model that does not allowresidual correlations among Y1; : : : ; Yr may be essentially no di�erent from imputing eachvariable Yj separately under a univariate model. In the adolescent substance-use exampleof Section 4, the nonzero correlations among the three time-varying covariates are crucialfor predicting a child's missing value for Y1 when Y2 and/or Y3 are observed, and vice-versa.Without missing data, techniques for �tting the multivariate model (1) would be rela-tively straightforward extensions of existing methods for the univariate case. When miss-ing values occur within y1; : : : ; ym in arbitrary patterns, however, direct likelihood-basedinferences about the unknown parameters � = (�;�;	) may be di�cult to obtain. Sec-tion 2 discusses general computational strategies for �tting the multivariate linear mixedmodel. Section 3 presents a Gibbs sampler that may be used to create model-based multi-ple imputations of the missing data for subsequent analyses. The technique is applied tosubstance-use data in Section 4, and Section 5 presents further discussion on the use of thismodel and many possible extensions.2 Strategies for model �ttingLet Y = (y1; : : : ; ym) denote the complete data without missing values. If Y were seen,inferences about the parameters � = (�;�;	) could be based on a likelihood function pro-portional to the product (i = 1; : : : ; m) of the normal density functions implied by (2).The �xed e�ects � can be removed from this likelihood function in one of two ways: pro-�ling, in which � is replaced by its conditional maximum given (�;	); and marginalizing,in which the likelihood is replaced by its inde�nite integral with respect to �. Both thepro�le and marginal likelihoods can be written in closed form as functions of the general-ized least-squares estimate for � given (�;	). Maximizing the former produces ordinarymaximum-likelihood (ML) estimates, whereas maximizing the latter leads to restrictedmaximum-likelihood (RML) estimates. 5



For the univariate (r = 1) version of this model, Lindstrom and Bates (1988) presentNewton-Raphson algorithms for ML and RML estimation. Newton-Raphson has excellentlocal convergence behavior but requires careful implementation. The calculations requiredto obtain derivatives of the loglikelihood at each iteration are complex and can be quiteexpensive. The algorithms of Lindstrom and Bates (1988) are �nely tuned for the univariatemodel, but they do not generalize easily to the multivariate case unless we assume that 	has a special patterned structure, 	 = � 
 � for some q � q matrix �. This structure,which forces the correlation matrices for the r columns of bi to be identical, seems quiteunrealistic in many situations. Consider, for example, a linear growth model in which theslopes and intercepts for each variable Y1; : : : ; Yr vary by subject. The correlation betweenthe slope and intercept of any variable Yj expresses the degree to which individuals withhigh initial values of Yj tend to also have high rates of growth for Yj; there may be noa priori reason to believe that these tendencies should be identical, especially when thevariables Y1; : : : ; Yr are very di�erent in nature.Simpler methods for ML and RML estimation are based on variants of the EM algo-rithm. EM relies on the fact that if the random e�ects B = (bV1 ; : : : ; bVm)T were seen, thelikelihood function would factor into distinct likelihoods for 	 and (�;�),L(� j Y;B) = L(	 j B)L(�;� j Y;B); (4)each of which can be maximized quickly without iteration. EM algorithms tend to be quitestable but may converge very slowly; in many problems, hundreds or even thousands ofiterations are required. EM-type algorithms for ML and RML estimation in the univariatecase were given by Laird and Ware (1982) and Laird, Lange, and Stram (1987). As pointedout by Jennrich and Schluchter (1986) and Liu and Rubin (1995), many variants of EM arepossible in the univariate case; not all of these generalize easily to the multivariate case.The key feature of EM is that at each iteration, the su�cient statistics in (4) pertainingto B must be replaced by their conditional expectations given Y and the current estimate6



of �. In the multivariate model, the pairs (yi; bi) are distributed according toy Vi j bi; � � N( (Xi� + Zibi)V ; (�
 Ini) ); (5)b Vi j � � N(0;	); (6)independently for i = 1; : : : ; m. It follows from Bayes's Theorem that b Vi j yi; � �N(~b Vi ;�i), where ~b Vi = �i (��1 
 ZTi ) (yi �Xi�)V ; (7)�i = (	�1 + (��1 
 ZTi Zi) )�1: (8)Calculating �i by (8) requires inversion of rq � rq matrices and is the preferred methodin most cases where q < ni. The su�cient statistics for B required by EM are linear inthe elements of B and BTB, whose expectations are ~B = (~b V1 ; : : : ;~b Vm )T and Pmi=1(�i +~b Vi (~b Vi )T ), respectively.Now consider what happens when portions of Y = (y1; : : : ; ym) are ignorably missing.Let yi(obs) and yi(mis) denote the observed and missing parts of yi, respectively, and letYobs = fyi(obs)g and Ymis = fyi(mis)g. The simplest EM-type algorithms for ML and RMLestimation still rely on the factorization (4). At each iteration, however, one must now �ndthe conditional expectation given Yobs of su�cient statistics that are linear and quadraticfunctions of bi and yi(mis). From (5){(6) we see that y Vi and bVi are jointly normal withcovariance matrix 24 (Ir 
 Zi)	(Ir 
 Zi)T + (�
 Ini) (Ir 
 Zi)		(Ir 
 Zi)T 	 35 : (9)To �nd the expectations necessary for EM, one would have to repeatedly apply a sweepoperator or similar orthogonalization method to these matrices of dimension (rq + rni) �(rq+ rni) for i = 1; : : : ; m. Without imposing further structure (e.g. equality of the Zi) onthe model, the computations for even the simplest variants of EM can thus be exceedinglyexpensive. 7



3 Inference by multiple imputationIn typical applications, many of the parameters in this multivariate model are a nuisance,and obtaining quality estimates of every component of � is not of high priority. Rather thanattempting direct likelihood-based inferences about �, let us consider inference by multipleimputation. In multiple imputation, one must generate k independent draws Y (1)mis ; : : : ; Y (k)from a posterior predictive distribution of the missing data,P (Ymis j Yobs) = Z P (Ymis j Yobs ; �)P (� j Yobs) d�; (10)where P (� j Yobs) is proportional to the product of the observed-data likelihood functionP (� j Yobs) = Z L(� j Y ) dYmisand a prior density function �(�). After imputation, the resulting k versions of the completedata are separately analyzed using complete-data methods, and the results are combinedto obtain inferences that e�ectively incorporate uncertainty due to missing data. As shownby Rubin (1987), quality inferences can often be obtained with a very small number (e.g.k = 5) of imputations. Methods for combining the results of the complete-data analysesare reviewed by Schafer (1996).Except in trivial situations, the posterior predictive distribution (10) cannot be simu-lated directly. It is possible, however, to create random draws of Ymis from P (Ymis j Yobs)using techniques of Markov chain Monte Carlo (MCMC). In MCMC, one generates a se-quence of dependent random variates whose distribution converges to the desired target.Overviews of MCMC methods are given by Gelfand and Smith (1990); Smith and Roberts(1993); Tanner (1993); and in the chapters of Gilks, Richardson, and Spiegelhalter (1996).Applications of MCMC to univariate linear mixed models have been made by a number ofauthors, including Gelfand et al. (1990); Zeger and Karim (1991); Liu and Rubin (1995);and Carlin (1996). Like EM, these MCMC methods rely simpli�cations to the likelihood8



that result when the random e�ects are assumed known. Unlike EM, however, MCMC al-lows us to circumvent manipulations on the large matrices (9) by alternately conditioningon simulated values of the random e�ects and the missing data.In a slight abuse of notation, let A� � P (A) denote simulation of a random variate A�from a distribution or density function P (A). Consider an iterative simulation algorithm inwhich the current version of the unknown parameter �(t) = (�(t);�(t);	(t)) and the missingdata Y (t)mis are updated in three steps:b(t+1)i � P (bi j Yobs ; Y (t)mis ; �(t)); i = 1; : : : ; m; (11)�(t+1) � P (� j Yobs ; Y (t)mis ; B(t+1)); (12)y(t+1)i(mis) � P (yi(mis) j Yobs ; B(t+1); �(t+1)) i = 1; : : : ; m: (13)Given starting values �(0) and Y (0)mis , these three steps de�ne a Gibbs sampler in which thesequences f�(t)g and fY (t)misg converge in distribution to P (� j Yobs) and P (Ymis j Yobs),respectively.This is not the only Gibbs sampler that could be implemented for this problem; asnoted by Liu and Rubin (1995) in the univariate case, a wide variety of alternative MCMCalgorithms are possible. If any of the steps (11){(13) could be carried out without con-ditioning on simulated values of Ymis or B then the algorithm could be made to convergemore quickly. De-conditioning may greatly increase the computational cost per iteration,however, and some limited experience suggests that the additional e�ort required to do sois usually not worthwhile. The three-step algorithm (11){(13) is actually among the slowestto converge in terms of number of iterations required, but iterations can be executed on acomputer quickly provided that su�cient physical memory is available to store Yobs , Y (t)mis ,and the covariate matrices Xi and Zi. If the algorithm is believed to have converged tostationarity by T cycles, then k imputations of Ymis can be generated in kT cycles. Conver-gence can be informally assessed by examining the time-series plots, autocorrelations, etc.for functions of �(t). Formal and informal convergence diagnostics for MCMC are discussed9



by Schafer (1996) and in the chapters of Gilks, Richardson, and Spiegelhalter (1996).Implementation of (11){(13) requires us to specify a prior distribution for �. It is knownthat in mixed-e�ects models, improper prior distributions for the covariance componentsmay lead to Gibbs samplers that do not converge to proper posteriors, even though eachstep of the cycle is well-de�ned. For this reason, proper prior distributions for the covariancematrices are highly recommended. For simplicity, let us apply independent inverse-Wishartdistributions ��1 � W (�1;�1) and 	�1 � W (�2;�2), where W (�;�) denotes a Wishartwith � > 0 degrees of freedom and mean �� > 0. These priors are proper providedthat �1 � r and �2 � qr. In choosing values for the hyperparameters, it is helpful toregard ��11 ��11 and ��12 ��12 as prior guesses for � and 	 with con�dence based on �1 and�2 degrees of freedom, respectively. Small values for �1 and �2 make the prior densitiesrelatively di�use, reducing their impact on the �nal inferences. For �, we use an improperuniform density over Rpr.Under these priors, deriving each of the distributions in (11){(13) becomes a straight-forward application of classical Bayesian methods. The random e�ects bi in (11) are drawnfrom multivariate normal distributions with means and covariances calculated as in (7){(8).Simulation of � in (12) proceeds as follows: First, draw 	�1 from a Wishart distributionwith parameters � 02 = �2 +m and �02 = (��12 + BTB)�1, respectively. Next, calculate theordinary least-squares coe�cients�̂ =  mXi=1XTi Xi!�1  mXi=1XTi (yi � Zibi)!and residuals "̂ = yi �Xi�̂ �Zibi, and draw ��1 from a Wishart distribution with degreesof freedom � 01 = �1�p+Pmi=1 ni and scale matrix �01 = ���11 +Pmi=1 "̂Ti "̂i��1. Finally, draw� from a multivariate normal distribution centered at �̂ with covariance matrix � 
 V ,where V = �Pmi=1XTi Xi��1. For simulating �, it is helpful to note that if G and H areupper-triangular square roots of � and V , respectively (GTG = � and HTH = V ), thenG
H is an upper-triangular square root of �
 V .10



To carry out the �nal step (13) of the Gibbs sampler, notice that the rows of "i = yi �Xi��Zibi are independent and normally distributed with mean zero and covariance matrix�. Therefore, in any row of "i, the missing elements have an intercept-free multivariatenormal regression on the observed elements; the slopes and residual covariances for thisregression can be quickly calculated by inverting the square submatrix of � correspondingto the observed variables. Drawing the missing elements in "i from these regressions andadding them to the corresponding elements of Xi�+Zibi completes the simulation of yi(mis).The convergence behavior of this algorithm is governed by two factors: the amount ofinformation about � carried in Ymis relative to Yobs ; and the degree to which the randome�ects bi can be estimated from the yi. If the missing portions of Y exert high leverage overcomponents of �, or if the bi are poorly estimated (i.e. if the within-unit precision matrices��1 
 ZTi Zi tend to be small relative to  �1), then convergence can be slow. Notice thatany row of yi that is completely missing may be omitted from consideration, along with thecorresponding rows of Xi and Zi, without changing the form of the complete-data model(1). Ignoring these rows will eliminate unnecessary computation at each cycle and reducethe rate of missing information, speeding the overall convergence. These rows of data maybe restored at the �nal imputation step (13) to produce a fully completed dataset.This Gibbs sampler has been implemented by the author in Fortran-77 as a functionwithin the statistical languages S and Splus (Becker, Chambers, and Wilks, 1988). Asequence of T � 1 Gibbs cycles is performed with a single Fortran call; the functionreturns the �nal imputed dataset (Yobs ; Y (T )mis ) and the history �(1); : : : ; �(T ) of parameteriterates. Starting values for � and Ymis may be supplied, or the function may be allowed tochoose its own starting value. Source code and documentation for this function will soon beavailable at the S archive in Statlib, the statistical software distribution service located atCarnegie Mellon University (http://lib.stat.cmu.edu/S/). The package will be calledipan, for imputation of multivariate panel data.11



Table 1: Missingness rates (%) by gradeGrade5 6 7 8 9 10DRINKING 2 24 24 33 35 44POSCON 47 55 62 100 66 63NEGCON 48 56 62 100 100 1004 Application: Adolescent Alcohol Prevention TrialData for this example were drawn from the Adolescent Alcohol Prevention Trial, a longi-tudinal school-based intervention study of substance use in the Los Angeles area (Hansenand Graham, 1991). Attitudes and behaviors pertaining to the use of alcohol, tobacco,and marijuana were measured by self-report questionnaires administered yearly in grades5{10. The data exhibit typical rates of uncontrolled nonresponse due to absenteeism, at-trition, etc. which we will assume to be ignorable; this assumption has been given carefulconsideration and is not entirely implausible (Graham, Hofer, and Piccinin, 1994). In ad-dition, large amounts of truly ignorably missing data arose by design, because each studentreceived only a subset of the attitudinal items in any year; in some years, certain atti-tudinal questions were omitted entirely. For the present analysis, we examined a cohortof m = 3; 574 children and focused attention on three variables: DRINKING, a compositemeasure of self-reported alcohol use; POSCON, the perceived positive consequences of alcoholuse; and NEGCON, the perceived negative consequences of use. DRINKING appeared on thequestionnaire every year, whereas POSCON was omitted in grade 8 and NEGCON was omittedin grades 8{10. Missingness rates for the three variables by grade are shown in Table 1;observed means and standard deviations appear in Table 2.An analysis was performed to assess the possible in
uences of POSCON and NEGCON onDRINKING. In this analysis, missing responses were imputed under a multivariate lineargrowth model with random slopes and intercepts for each of the r = 3 variables, plus �xede�ects for gender on both the slope and intercept. Each Xi matrix had p = 4 columns12



Table 2: Means (standard deviations) of observed variablesby grade Grade5 6 7 8 9 10DRINKING �1:43 �1:12 �0:57 0:09 1:29 1:97(1.33) (1.96) (2.73) (3.47) (4.40) (4.78)POSCON 1.30 1.34 1.48 | 1.84 1.96(0.61) (0.62) (0.74) | (0.89) (0.91)NEGCON 2.94 3.05 3.07 | | |(0.76) (0.75) (0.77) | | |corresponding to an intercept, grade, gender, and gender � grade; and each Zi had q = 2columns corresponding to intercept and grade. Notice from Table 2 that both the averagelevel of DRINKING and its variation increase dramatically over time. To make the assumptionof a constant residual covariance matrix � more plausible, alcohol use was re-expressed asthe logarithm of (DRINKING+5). Because NEGCON is entirely missing for the last three yearsof the study, the likely values of this variable for grades 8{10 are being inferred from twosources: extrapolation from grades 5{7 based on the assumption of linear growth, and theresidual covariances among the three response variables which are assumed to be constantacross time. Neither of these assumptions can be e�ectively tested from the data at hand,so inferences pertaining to NEGCON are heavily model-based.Due to the high rates of missing information, it was anticipated that the Gibbs samplerwould converge slowly. To assess convergence, the algorithm was run for an initial 2,000cycles under a very mild prior with �1 = 3, ��11 = 3I, �2 = 6, ��12 = 6I. Time-series plotsand sample autocorrelations for the components of � were then examined. As anticipated,the elements of 	 pertaining to the slopes and intercepts of NEGCON were among the slowestto converge because of the extreme sensitivity of these parameters to missing data. Based onthis exploratory run, it appeared that several hundred cycles might be su�cient to achieveapproximate stationarity. The Gibbs sampler was then run for an additional 9,000 cycles,13



with the simulated value of Ymis stored at cycles 2,000, 3,000, . . . , 11,000. Autocorrelationsestimated from cycles 1,001{11,000 veri�ed that the dependence in all components of � hadindeed died down by lag 200, so the ten stored imputations could be reasonably regardedas independent draws from P (Ymis j Yobs). Each 1,000 cycles required approximately 17minutes on a Sun UltraSPARC-1 workstation, approximately one cycle per second.After imputation, the data were analyzed by a conventional linear growth-curve modelfor the logarithm of (DRINKING + 5). The model was a version of (3) with �xed e�ects forgender, grade, gender � grade, POSCON and NEGCON, plus random intercepts and slopes forgrade. ML estimates were computed for each imputed dataset using an ECME algorithm,an extension of EM described by Liu and Rubin (1994). In this version of ECME, theparameters were partitioned as � = (�1; �2) where �1 = (�; �2) and �2 = 	=�2 (here �2denotes the univariate version of �). Each cycle of ECME consisted of (a) an E-step, inwhich the conditional expectations of B = (b1; : : : ; bm)T and BTB given Y were calculatedunder the current value of �; (b) a constrained maximization of the expected loglikelihoodfor �2 given the previous estimate of �1, in which B = (b1; : : : ; bm)T and BTB are replacedby their expectations; and (c) a constrained maximization of the actual loglikelihood for �1given the updated estimate of �2. The updating formulas areV (t)i = ��(t)2 �1 + ZTi Zi��1 ;~b(t)i = V (t)i ZTi ( yi �Xi�(t) );W (t)i = Ini � ZiV (t)i ZTi ;�(t+1)2 = 1m�2(t) mXi=1 �~b(t)i ~b(t)i T + V (t)i � ;�(t+1) =  mXi=1XTi W (t)i Xi!�1  mXi=1XTi W (t)i yi! ;�2(t+1) = N�1 mXi=1(yi �Xi�(t+1))TW (t)i (yi �Xi�(t+1));where N = Pmi=1 ni. This simple algorithm, which does not seem to have appeared beforein the literature, ran slightly faster than any of the three ECME algorithms described by14



Table 3: Estimated coe�cients, standard errors, degreesof freedom and percent missing information from multiply-imputed growth-curve analysisest. SE df % missingintercept �2.572 0.084 19 71grade (1=5th, . . . , 6=10th) 0.386 0.011 35 53sex (0=female, 1=male) 0.370 0.046 324 17sex � grade �0.105 0.013 88 33POSCON 0.549 0.023 17 76NEGCON �0.090 0.023 15 80Liu and Rubin (1995) on this dataset and several others. Another virtue of this algorithmis that the value of the actual loglikelihood function at each iteration is available essentiallyno cost. Except for additive constants, the loglikelihood can be shown to bel(�(t) j Y ) = � N2 log �2(t) � m2 log j�(t)2 j + 12 mXi=1 log jV (t)i j ; (14)and the determinants in (14) can be obtained as byproducts of the inversions required forV (t)i .Using this algorithm, ML estimates were quickly obtained from the ten imputed datasets;convergence of the parameters to four signi�cant �gures required an average of just 36iterations. Standard errors for the �xed e�ects were obtained from the �nal value of�2(Pmi=1XTi WiXi)�1. The ten sets of �xed-e�ects estimates and their standard errors werethen combined using Rubin's (1987) rules for multiple-imputation inference for scalar es-timands; these and other rules for combining multiply-imputed analyses are reviewed bySchafer (1996). Results of this procedure are summarized in Table 3. The point estimatesare simply the averages of the ML estimates across the ten imputations. The standarderrors incorporate uncertainty due to missing data as well as ordinary sampling variability.The degrees of freedom shown are the estimated degrees of freedom appropriate for hy-pothesis tests and interval estimates based on a Student's t-approximation. All coe�cientsare highly statistically signi�cant.Table 3 also shows the estimated percentage of missing information for each estimand as15



derived by Rubin (1987). The high rates of missing information indicate that the inferencesfor all coe�cients (except sex) may be highly dependent upon the form of the imputationmodel and the assumption of ignorable nonresponse. The latter assumption is not particu-larly troubling for these data, because the majority of missing values are missing by design.Certain assumptions of the imputation model, however|in particular, the assumed lineargrowth for NEGCON and constancy of the residual covariances across time|are not reallytestable from the observed data, so results from this analysis should be interpreted withcaution.Despite these caveats, the estimates in Table 3 provide some intriguing and plausibleinterpretations about the behavior of this cohort. The positive coe�cient for sex indicatesthat boys reported higher average rates of alcohol use than girls in the initial years of thestudy. The negative e�ect for sex � grade, however, shows that girls exhibit higher rates ofincrease than boys, so that the girls' average overtakes the boys' by grade 8. The large pos-itive e�ect of POSCON indicates that increasing perceptions about the positive consequencesof alcohol use are highly associated with increasing levels of reported use. The negativecoe�cient for NEGCON suggests that increasing beliefs about negative consequences do tendto reduce levels of use, but the e�ect is much smaller than that of POSCON. These results areconsistent with those of previous studies (MacKinnon et al., 1991) which demonstrated thatperceived positive consequences may be in
uential determinants of substance-use behavior,but beliefs about negative consequences have little or no discernible e�ect.5 Discussion and extensionsThe multivariate mixed model (1) is a natural extension of the simple univariate model (3)which has been quite popular in the analysis of longitudinal data. The imputation proce-dures described in Section 3 are appropriate for longitudinal analyses with partially missingcovariates, when those covariates are going to be incorporated into an analytic model as16



�xed e�ects. These methods are also appropriate for multivariate cross-sectional studieswhere units are nested within naturally occurring groups (e.g. children within schools). Thealgorithm and software described in this article provide a principled solution to missing-dataproblems for this somewhat limited but important class of analyses.The imputation model and Gibbs sampler can be extended in a number of importantways. The use of an unstructured covariance matrix 	 for the random e�ects may belimiting in situations where some aspects of 	 may be poorly estimated|for example, inmultivariate cluster samples with many variables, many units per cluster, but relatively fewclusters. A more parsimonious block-diagonal structure, which assumes that the randome�ects pertaining to the r response variables are independent, can be handled easily. Undera block-diagonal structure, the likelihood function in (4) pertaining to 	 factors into rdistinct likelihoods for the diagonal blocks, so a Gibbs sampler can draw these blocksindependently. Another extension which can be easily implemented pertains to linearmodels with additional random e�ects due to higher levels of clustering; this would arise,for example, in multivariate studies where individuals are grouped into larger units andmultiple observations on individuals are taken over time. Both of these features will beincorporated into future versions of the software.We are currently investigating a number of additional extensions the model. The �rstextension pertains to columns of yi that are necessarily constant across the rows 1; : : : ; ni.In longitudinal studies, these columns would represent covariates that do not vary over time;in clustered applications, they would represent characteristics of the clusters rather thanthe units nested with them. If these covariates have no missing values, they can be handledunder the current model by simply moving them to the matrix Xi. When missing valuesare present, however, they must be explicitly modeled for purposes of imputation. If weare willing to impose a simple parametric distribution on these covariates (e.g. multivariatenormal), then it will be straightforward to extend the Gibbs sampling procedure to impute17



these as well.Another useful extension involves interactions among the columns of yi. The multi-variate normal model allows only simple linear associations among the variables Y1; : : : ; Yr,but in many studies one would like to preserve and detect certain nonlinear associationsand interactions. In the data example of Section 4, for example, it may have been usefulto see whether the strong e�ect of POSCON on DRINKING may have been increasing or de-creasing over time; the imputation model, however, imputed the missing values under anassumption of a constant POSCON � DRINKING association. Extensions of the multivariatemodel to allow more elaborate �xed associations such as POSCON � DRINKING � grade, orrandom associations such as POSCON � DRINKING � subject, are an important topic forfuture research.Finally, it will be important to extend the imputation procedures to include time-varying responses that are categorical. Under the current procedure, ordinal responses canbe handled in an ad hoc fashion, imputing under a normal model and rounding o� the resultsto the nearest category. Some evidence suggests that ad hoc rounding procedures oftenwork well in practice (Schafer, 1996). In other situations, however, a normal model will beclearly unacceptable|for example, with nominal (unordered) responses or binary variablesthat are heavily skewed. Imputation methods for multivariate datasets with continuousand/or categorical variables (Schafer, 1996) should be extended to include random e�ectsthat arise from longitudinal or clustered structure.In the current model the rows of each response matrix yi are assumed to be condition-ally independent given bi with common covariance matrix �. This assumption has beenrelaxed by Jennrich and Schluchter (1986), Lindstrom and Bates (1988), and others inthe univariate case to allow a residual covariance matrix of the form �2Vi, where Vi hasa simple (e.g. autoregressive or banded) pattern dependent upon one or more unknownparameters. Sensible multivariate extensions of these patterned covariance structures to a18



tends to produce models and algorithms that are complex even apart from missing data.For example, the obvious extension of �Vi � N(0; (�
 Ini) ) to �Vi � N(0; (�
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CHAPTER 12 
Joseph L. Schafer 

issing values are a nuisance in many research efforts but especially so in 
the collection and analysis of longitudinal data. Multiple occasions bring M greater opportunities for missed measurements. Fortunately, missing data 

is one area where statisticians have made substantial progress in recent years. 
In this chapter, I present a strategy for analyzing incomplete longitudinal data 
by multiple imputation (Rubin, 1987; Schafer, 1997a). 

Missing data pose a difficulty because the overwhelming majority of para- 
digms and software for statistical analysis assume that the input data are com- 
plete. For this reason, the quickest and most convenient method for handling 
incomplete observations is case deletion, that is, ignoring participants with 
missing information. Case deletion suffers from a number of serious drawbacks, 
which have been well documented (e.g., Little Or Rubin, 1987). For multivariate 
analyses involving a large numDer of items case deletion can be very inefficient, 
discarding an unacceptably high proportion of participants; even if the per-item 
rates of missingness are low, few participants may have complete data for all 
items. Moreover, case deletion leads to valid inferences in general only when 
missing data are missing completely at random (MCAR), in the sense that the 
discarded cases are like a random subsample of all cases. If the discarded cases 
differ systematically from the rest, then the resulting estimates may have po- 
tentially serious bias. 

A natural alternative to case deletion is imputation, the practice of replacing 
missing data with plausible values. Various forms of imputation have been ap- 
plied in federal surveys and censuses for decades (Madow, Nisselson, Q Olkin, 
1983). Imputation has been the survey statistician’s method of choice for han- 
dling item nonresponse, situations in which a participant provides some infor- 
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mation but fails to respond to one or more individual items on a questionnaire. 
Imputation is attractive because it apparently solves the missing-data problem 
at the outset; once the missing values have been imputed, the data set can be 
summarized and analyzed by familiar complete-data methods. Another attrac- 
tive feature of imputation is its efficiency: Unlike case deletion, imputation 
allows one to make full use of the data at hand. 

Methods of imputation range from simple procedures, such as mean sub- 
stitution-replacing each missing value with the observed mean for that vari- 
able-to elaborate hot-deck algorithms that jointly replace missing items with 
data obtained from donor cases chosen to match the original on selected items 
(e.g., Bailey, Chapman, & Kasprzyk, 1985). In longitudinal data sets with sub- 
stantial participant-to-participant variation, analysts have sometimes filled in 
missed measurements by linear interpolation, extrapolation, or “last value car- 
ried forward.” Unless great care is taken, these ad hoc imputation procedures 
may seriously distort important aspects of the distribution of a variable or its 
relationships with other variables. In general, it is desirable for the distribution 
of imputed values to resemble the distribution of the observed values, partic- 
ularly with respect to intervariable relationships. 

Even if an imputation method successfully preserves important aspects of 
the data distributions, a potentially serious problem remains: Imputation adds 
fictitious information to a data set. If imputed values are treated the same way 
as observed values in subsequent analyses, then the resulting inferences will be 
artificially precise, because the imputed values are imperfect proxies for the 
data they represent. With single imputation, there is no simple way to reflect 
uncertainty in the imputed values. In response, Rubin (1987, 1996) proposed 
the method of multiple imputation, by which each missing value is represented 
by a set of rn > 1 simulated values. Let Y = (Y&,, Y,,,) denote a generic data set, 
in which Yobl is the observed part and Y,,, is the missing part. Multiple impu- 
tation replaces Y,,, with a set of simulated draws Y::, Yz,),, . . . , Y z :  from a 
predictive probability distribution P(Ym,s 1 Yobr) arising from a model. After mul- 
tiple imputation, one has m simulated complete data sets, YcJ)  = (Yobsr Y:b), j = 

1, 2 ,  . . . , rn, which are analyzed with standard complete-data methods. The 
results are then combined, using simple arithmetic rules, to produce overall 
estimates and standard errors that account for missing-data uncertainty. I re- 
viewed these rules (Schafer, 1997a) and demonstrate them in the example near 
the end of this chapter. 

The key idea of multiple imputation is that it treats missing data as an 
explicit source of random variability over which to be averaged. The process of 
creating imputations, analyzing the imputed data sets, and combining the re- 
sults is a Monte Carlo version of averaging the statistical results over the pre- 
dictive distribution P(Y,,,I Yob5). In practice, a large number of multiple impu- 
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tations are not required; sufficiently accurate results can often be obtained with 
m 5 10. 

Carrymg out multiple imputation requires two sets of assumptions. First, one 
must propose a model for the distribution of Y. This data model should be 
plausible and should bear some relation to the type of analysis to be performed. 
For example, one could assume that the variables in the data set are jointly 
normally distributed. In the case of longitudinal analyses the model should be 
capable of preserving the correlation structure and time trends within individ- 
uals. The second set of assumptions pertains to the manner in which the miss- 
ing values became missing. It is most common to assume that the missing data 
are missing at random (MAR) in the technical sense defined by Rubin (1976), 
which means that the probabilities of missingness may depend on the observed 
values YobL but not on the missing data Y,,,. The MAR assumption is primarily 
a mathematical convenience that allows one to perform imputation without 
explicitly modeling the missing-data mechanism. In practice, MAR is essentially 
untestable; it cannot be verified or contradicted by examination of the observed 
data. If the assumption seems prima facie implausible, then alternative proce- 
dures can be developed by modeling the probabilities of missingness. General 
techniques and software for creating multiple imputations under non-MAR 
models have not yet been developed; this is an important area for future re- 
search. Further discussion on the plausibility and ramifications of MAR was 
given by Little and Rubin (1987); Graham, Hofer, and Piccinin (1994); and 
Schafer (1997a). 

Multiple imputation is not the only principled method for handling missing 
data. For parametric models, a main competitor is the technique of direct max- 
imum likelihood, sometimes called raw or full-information maximum likelihood, 
which maximizes a likelihood function on the basis of the observed data Yobr 
alone. This likelihood function may be written as 

r 
(12.1) 

where 8 represents the unknown parameters of the data model, and L(O I Yobsr 
Y,,,,,) denotes the likelihood function that one would use if no data were missing. 
The integration in Equation 12.1 eliminates the dependence on Y,,,,,, broadening 
the likelihood function to reflect the additional uncertainty due to the fact that 
Y,,,,, is unknown. In effect, this integration is nearly the same as the averaging 
over P(Y,,,,, I YubJ that takes place in multiple imputation. Except in very simple 
problems, the likelihood function Equation 12.1 tends to be complicated, often 
requiring complicated numerical techniques or approximations. When carried 
out properly. direct maximum likelihood can be statistically more efficient than 
multiple imputation because it is a deterministic procedure; no simulation is 
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involved, so no extra variability is introduced into summary statistics. (In most 
cases, this extra randomness introduced by multiple imputation is quite minor.) 
In large samples, estimates and standard errors obtained by direct maximum 
likelihood and by multiple imputation tend to be very similar. 

Applications of direct maximum likelihood are now common in longitu- 
dinal analyses. Modern algorithms for growth modeling as implemented in hi- 
erarchical linear modeling (HLM; Bryk, Raudenbush, & Congdon, 19961, Proc 
Mixed in SAS (Littell, Milliken, Stroup, & Wolfinger, 19961, and similar pack- 
ages are designed for unbalanced data, where measurements on each participant 
may be taken at a different set of time points. Responses that are missing, either 
unintentionally or by design, are removed from the likelihood by integration 
as in Equation 12.1. An important limitation of these packages is that the 
missing values must be confined to the response variable; missing values on 
predictors are not allowed. If the individuals in the study have been assessed 
at a common set of occasions, models equivalent to those fit by HLM and Proc 
Mixed can be formulated using latent growth curves (McArdle, 1988; Meredith 
& Tisak, 1990; Willett & Sayer, 1994) and structural equations software. Two 
recent programs for structural equations, Mx (Neale, 1994) and Amos (Ar- 
buckle, 1995), perform direct maximum likelihood from a raw data set with 
missing values. Missing data can be accommodated in other structural equations 
software by using the technique of multiple groups (Allison, 1987; Duncan Q 
Duncan, 1994; Muthen, Kaplan, & Hollis, 1987). An advantage of the latent 
growth curve approach is that missing values may occur on predictors as well 
as the response; however, the measurements must be taken at a relatively small 
number of common time points. 

When a direct maximum-likelihood procedure is available for a particular 
analysis, it may indeed be the most convenient and attractive method. Despite 
the increasing popularity of direct maximum likelihood, however, multiple im- 
putation still offers some unique advantages for data analysts. First, it allows 
them to use their favorite models and software; an imputed data set may be 
analyzed by virtually any method that would be appropriate if the data were 
complete. As computing environments and statistical models grow increasingly 
complex, the value of using familiar methods and software should not be un- 
derestimated. Second, there are still many classes of problems for which no 
direct maximum-likelihood procedure is available. For example, in longitudinal 
analyses there is no direct maximum-likelihood method for incomplete covar- 
iates when occasions of measurement vary by individual. 

A third reason why multiple imputation can be more attractive than direct 
maximum likelihood is that the separation of the imputation phase from the 
analysis phase lends a greater flexibility to the entire process. With multiple 
imputation the imputer is free to use additional variables that may be helpful 
for imputation but that are not of direct interest for the analysis. For example, 
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consider a covariate that helps to explain reasons for nonresponse. Using this 
variable in the imputation procedure tends to reduce bias in subsequent anal- 
yses, even in analyses that do not involve that variable. 

Finally, an important advantage of multiple imputation over direct maxi- 
mum likelihood is that it singles out missing data as a source of random vari- 
ation distinct from ordinary sampling variability. The likelihood function Equa- 
tion 12.1 lumps these two types of variability together; summary statistics (e.g., 
standard errors) derived from direct maximum likelihood do not reveal two 
sources. With multiple imputation, however, the overall uncertainty is formally 
partitioned into sampling variability and missing-data uncertainty. This partition 
immediately yields an estimated rate of missing information, which can be quite 
helpful for assessing the impact of missing data on inferences for any parameter 
of interest. 

The purpose of this chapter is not to criticize direct maximum likelihood 
in favor of multiple imputation; rather, it is my hope that more analysts will 
recognize the important advantages offered by both of these modern missing- 
data methods and begin to use them instead of case deletion or other ad hoc 
procedures. In most real-life applications, missing data are not the main focus 
of scientific inquiry but an unpleasant nuisance. Missing data should be handled 
quickly and effectively but without compromising the integrity of the analytic 
results. Multiple imputation might not be the optimal choice for every analysis, 
but it is a handy statistical tool and a valuable addition to a researcher's meth- 
odological toolkit. 

In the remainder of this chapter, I describe a method for creating multiple 
imputations in longitudinal databases. Previous algorithms and software for 
multiple imputation, as described in Schafer (1997a), have focused on missing 
data in general multivariate settings. In response to the specific need for lon- 
gitudinal analyses, a library of algorithms called PAN has been developed for 
imputing multivariate panel data, where a group of variables is measured for 
individuals at multiple time points. Alternatively, PAN may be applied to clus- 
tered data where variables are measured at a single point for participants nested 
within some larger unit (e.g., students within classrooms). Future versions of 
the software will be able to handle repeated measures and clustering simulta- 
neously 

PAN is at present available as a library of functions for the statistical pro- 
gramming language s-PLUS (Mathsoft, Inc., 1997) .' Current efforts are focused 
on developing a version of PAN that operates as a stand-alone program in the 
Windows 95/98/NT environment. 

'This can be downloaded free of charge from http://www.stat.psu.edu/-jldmisoftwa.htm1. 
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The PAN Model 

Suppose that a group of time-varying continuous variables Y,, Y2, . . . , Y, is 
measured for individuals i = 1, 2, . . . , N at multiple occasions. The responses 
for participant i may be arranged as a matrix with one column for each variable 
and one row for each occasion, 

i (12.2) 

where yllh denotes the value of variable Yh at occasion j.  The number of occasions 
n, and their temporal spacing may vary by participant. I assume that missing 
values occur throughout the matrices y,, y2, . . . , y, and that these missing 
values are MAR. The immediate goal is to multiply impute the missing values 
so that the data can be analyzed in a straightforward manner. Ultimately, the 
analyst may choose to regard one column of Equation 12.2 as a response and 
the other columns as potential predictors in a conventional growth model. For 
the moment, however, I regard all r columns of yl as random responses and 
model them jointly for the purpose of imputation. I construct a multivariate 
growth model to describe the joint distribution of the variables Y,, Y2, . . . , Y,, 
possibly given other time-varying or static covariates that are fully observed and 
require no imputation. 

The model used by PAN was designed to preserve the following relation- 
ships: (a) relationships among the variables Y,, Y2,  . . . , Y, within an individual 
at each time point. These are reflected by the covariances among the elements 
of any row of yI. (b) Growth or change in any variable Y, within an individual 
across time points. This growth is reflected by trends within the columns of y,. 
(c) Relationships between the response variables YI, Y2, . . . , Y, and any addi- 
tional participant-level (non-time-varying) covariates included in the model. 
The participant-level covariates may be continuous or categorical, but they must 
be fully observed; missing values on these non-time-varylng variables are al- 
lowed in the current version. Missing values in time-varying covariates are al- 
lowed and will be imputed, provided that they are included among Y1, 
Y2, . . . , Y,. 

PAN relies on a multivariate extension of a linear mixed-effects model that 
has been popular for nearly 20 years. The model is 

y, = X,P + Z,b, + & I ,  (12.3) 

where X,(q X p )  and Z,(q X q) are known covariate matrices, p contains 
regression coefficients common to all units, and b, contains coefficients specific 
to unit i.  Note that Equation 12.3 is a multivariate regression; P and b, are 
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matrices with r columns, one column for predicting each of the variables Y,, 
Y2,  . , . , Y,, and E,  is also a matrix with the same dimensions asy,(q, X r). The 
univariate (r = 1) version, which was proposed by Hartley and Rao (1967) and 
later popularized by Laird and Ware (1982), Jennrich and Schluchter (1986), 
Bryk and Raudenbush (1992), and others, is the basis for many of the linear 
growth models in use today. The coefficients p and b, are often called “fixed 
effects” and “random effects,” respectively. 

With univariate versions of this model, it is common to assume that the 
random effects and residuals are independently drawn from normal popula- 
tions, b, - N ( 0 ,  JI) and E, - N ( 0 ,  a21), i = 1, 2, . , . , N, where 9 is a q X q 
covariance matrix and I is the identity matrix (n, X n,). For the multivariate 
case, one generalizes these assumptions to 

vec(b,) - N(0 ,  ‘If) (12.4) 

vecW - “ 0 ,  (C 0 01, (12.5) 

where vec denotes the vectorization of a matrix by stacking its columns. The 
covariance matrix ‘If in Equation 12.4 has dimension qr X qr, and the Kro- 
necker product notation in Equation 12.5 indicates that the rows of E, are 
independently distributed as N ( 0 ,  C), where I; is r X r. 

In typical applications, the times of measurement are incorporated into X,, 
and perhaps Z,, as linear, quadratic, or higher order polynomials, and Z, is a 
subset of the columns of X,. For example, suppose that the first two columns 
of X, are (1, 1, . . . , 1)’ and ( t l ,  t2.  . . . , t,,)’, respectively, where t l ,  t2,  . . . , tn, 
are the times of measurement for participant i; beyond these, X, may have 
additional columns containing static or time-varyng covariates for participant 
i .  Setting Z, equal to the first column of X, produces a model of linear growth 
with intercepts randomly varying by individuals; setting Z, equal to the first 
two columns of X, produces random intercepts and slopes. Centering the dis- 
tribution of b, at zero causes p to become the population-averaged regression 
coefficients and the random effects b,, . . . , b, become perturbations due to 
interparticipant variation. 

Note that in this multivariate model all of the covariates in X, and Z, appear 
as predictors for each of the columns of y , .  As a result, the same group of 
predictors and the same type of trend over time (e.g., linear mean growth with 
varying slopes and intercepts) are used to describe each of the response variables 
Y , ,  Y2,  . . . , Y,. The actual coefficients for the response variables, as contained 
in the r columns of p and b,, vary, but the same group of predictors is applied 
to each response. At first glance, this may appear to be a serious limitation of 
the model; in many scientific contexts there is no reason to believe that Y,, Y2,  
. . . , Y, should depend on precisely the same set of covariates. One must re- 
member, however, that the purpose of PAN is not to construct a theoretically 
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meaningful model but to impute missing responses in such a way that impor- 
tant relations are preserved. If a covariate appears in subsequent analyses as a 
potential predictor of one or more of the response variables Y,, Y2,  . . . , Y , ,  
then that covariate should be included in the imputation model, even though 
its effects on some of the responses may be irrelevant or null. No biases.incur 
by using an imputation model that is larger or more general than necessary for 
any given analysis. For more discussion on the purpose of imputation modeling 
and the interplay between the imputer’s and analyst’s assumptions, see Meng 
(1994), Rubin (1996), and Schafer (1997a, chapter 4). 

The current version of PAN allows two types of assumptions about 9, the 
covariance matrix for the participant-level random effects b,, b,, . . . , b,. One 
allows the 9 matrix to be either (a) an unstructured or arbitrary covariance 
matrix or (b) a block diagonal covariance matrix of the form 

(12.6) 

where the nonzero blocks 9, , j = 1, . . . , r are covariance matrices of size q X 

q. The unstructured ‘P allows the random effects for any two responses Y, and 
Yk to be correlated, whereas the block-diagonal form assumes that the random 
effects for each response are independent of those for any other response. 

The choice between these two depends on both theoretical and practical 
considerations. Suppose that Y, ,  Yz . . . , Y,  represent achievement scores (math- 
ematics, reading comprehension, etc.) recorded for schoolchildren over time, 
and one applies a model of linear growth with intercepts and slopes that vary 
by individual. If there is reason to believe that growth patterns for the various 
achievement scores are related-for example, that participants with high rates 
of increase for mathematics may also tend to have high rates of increase for 
reading comprehension-then it would be wise to use an unstructured 9. As 
the number of response variables grows, however, it often becomes impractical 
to estimate covariances among all of their random effects unless the number of 
participants is very large; to obtain a stable estimate for 9 one may need to 
specify a block-diagonal structure. Unless the correlations among the random 
effects for some pairs of responses are unusually strong, the potential biases 
incurred by using a block-diagonal ‘P rather than an unstructured 9 tend to 
be minor. 

The basic strategy for specifying a PAN model can be summarized as fol- 
lows. First, any time-varymg covariates with missing values should be placed 
in the columns of y,, regardless of whether they are treated as “responses” or 
“predictors” in later analyses. If a variable is to be imputed, then it must be 
included among the variables Y, ,  Y,, . . . , Y,. Second, other covariates of interest 
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should be included in the columns of X, and, possibly, 2,. These include (a) 
variables that may be related to Y l ,  Y2,  . . . , Y,  and (b) variables that may explain 
missingness on Y,, Y2,  . . . , Y,. Placing a covariate in X, allows it to influence 
the distribution of any or all of the variables Y, ,  Y2,  , . . , Y,  in the population. 
Placing a time-vayng covariate in both X, and Z, allows its degree of influ- 
ence on Y,,  Y,, . . . , Y,  to vary across individuals. Note that static or non-time- 
varying covariates (e.g., gender or pretest measures) should not be included in 
Z, because it is impossible to estimate participant-specific effects for such var- 
iables. Finally, polynomial terms such as 1, time, time', and so on, may be 
appended to X, and 2, as desired, to allow the mean levels of Y, ,  Y,, . . . , Y,  
and the trends in these variables over time to vary across individuals. The choice 
of which terms to include will depend on what types of effects are believed to 
exist and what effects will be investigated in subsequent analyses. 

Computational Algorithms 

The computational engine of PAN is a Markov chain Monte Carlo (MCMC) 
algorithm called a Gibbs sampler. MCMC is a relatively new class of simulation 
techniques that are especially useful in Bayesian statistical analyses. A review of 
MCMC is beyond the scope of this chapter, but a gentle introduction is given 
by Casella and George (1992) and Schafer (1997a, chapters 3-4); more com- 
prehensive references are the volume edited by Gilks, Richardson, and Spie- 
gelhalter (1996) and the article by Gelfand and Smith (1990). Specific details 
and formulas for the computations used in PAN have been provided by me 
(Schafer, 1997b; Yucel Q Schafer, 1998). 

The MCMC algorithm in PAN is based on the observation that the model 
specified by Equations 12.3- 12.5 has the following unknown components: the 
missing values in y,, y2. . . . , yN, the random effects b,, b,, . . . , bN, the fixed 
effects p, and the covariance matrices 2 and 9. For the purpose of imputation, 
I am interested only in simulating the missing data in y L ,  y,, . . . , yN; the other 
unknown quantities are merely a nuisance. To simulate the missing data prop- 
erly, however, one must take into account the uncertainty in these other quan- 
tities and how it contributes to missing-data uncertainty. Expressing this un- 
certainty through mathematical formulas is difficult, so one accounts for the 
interdependence among the unknown quantities through a process of iterative 
simulation. 

PAN simulates the unknown quantities in a three-step cycle. 

1. Draw random values of b,, b,, . . . , b, on the basis of some plau- 
sible assumed values for the missing data and the parameters p, 
2, and 9. 

2. Draw new random values of the unknown parameters p, 2,  and 
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* on the basis of the assumed values for the missing data and the 
values of b,, b,, . . . , b, obtained in Step 1. 

3. Draw new random values for the missing data given the values of 
b,, b,, . . . , b, obtained in Step 1 and the parameters obtained in 
Step 2. 

At the end of this cycle the parameters and missing data from Steps 2 and 3 
become the values assumed in Step 1 at the start of the next cycle. Repeating 
Steps 1, 2, and 3 in turn defines a Markov chain, a sequence in which the 
distribution of the unknown quantities at any cycle depends on their simulated 
values at the previous cycle. The state of the process at Cycle 2 may be strongly 
correlated with its state at Cycle 1, but at subsequent Cycles 3 ,  4, 5, and so 
on, the relationship to the original state weakens. When a sufficient number of 
cycles has been taken to make the resulting state essentially independent of the 
original state, then the process is said to have converged or achieved stationarity. 
On convergence, the final simulated values for the missing data have in fact 
come from the distribution from which multiple imputations should be drawn. 

This algorithm may be used to create rn multiple imputations in the fol- 
lowing way Starting with some plausible initial values, run the Gibbs sampler 
for k cycles where k is large enough to ensure convergence, and take the final 
simulated version of the missing data as the first imputation; then return to the 
original starting values, run the Gibbs sampler for another k cycles, and take 
the final simulated version of the missing data as the second imputation; and 
so on. This method requires rn runs of length k cycles each. Another and 
perhaps more convenient way is to perform one long run of rnk cycles, saving 
the simulated values of the missing data after cycle k ,  2 k ,  . . . , rnk as the rn 
imputations. The latter method differs from the former only in that the final 
values from each subchain of length k become the starting values for the next 
subchain of length k.  

It is important to note that convergence of an MCMC procedure means 
convergence to a probability distribution rather than convergence to a set of 
fixed values. To say that the algorithm has converged by k cycles actually means 
that the random state of the process at cycle t + k is statistically independent 
of its state at cycle t for t = 1, 2 ,  . . .. After running the Gibbs sampler, one can 
examine the output stream over many cycles to see how many are needed to 
achieve this independence. Suppose that one collects and stores the simulated 
values for one parameter e (a particular element of @, q, or 2)  over a large 
number C of consecutive cycles. These values e"', e(2), . . . , (3'"' can be regarded 
as a time series. The lag-k autocorrelation, which is the correlation between 
pairs ($L) and pk) (t = 1, 2, . , . , C - k), can be calculated for various values 
of k to determine how large k must be for the correlations to die down. In 
principle, one should examine autocorrelations for each parameter in the model 
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and identify a value of k large enough to guarantee that the lag-k autocorrela- 
tions for all parameters are effectively zero. In my experiences with real data, 
however, I have found that the greatest levels of serial dependence are almost 
always seen in variance and covariance parameters, and in particular within the 
elements of ?. It is usually sufficient to monitor the behavior of the elements 
of q because it is with respect to these parameters that the algorithm tends to 
converge the most slowly For more discussion on monitoring the convergence 
of MCMC algorithms, see Schafer (1997a, chapter 4). 

The rate of convergence of this Gibbs sampler is influenced by a combi- 
nation of factors pertaining to the data and the model. First, it is affected by 
the amounts and patterns of missing data in the matrices yi ,  y r ,  . . . , yN; greater 
rates of missing information lead to slower convergence. It is also affected by 
one’s ability to estimate the individual random effects b,, b,, . . . , b,; if estimates 
of random effects are highly variable, then convergence is slowed. Finally, con- 
vergence behavior is also influenced by the number of participants (N). As the 
sample size grows, the distribution of the random 9 matrix at each cycle be- 
comes more tightly concentrated around the sample covariance matrix of b,, 
b,, . , . , b, from the previous cycle. As this distribution becomes tighter, the 
elements of q are less free to wander away from their values at the previous 
cycle, producing higher correlations from one cycle to the next. It is somewhat 
ironic that the algorithm converges more slowly as one’s ability to estimate the 
parameters increases. With a large number of participants and a small number 
of occasions per participant, it is not uncommon for the Gibbs sampler to 
require several hundred or even 1,000 cycles to converge. Slow convergence is 
not necessarily a problem, however, because in most cases only a few impu- 
tations are necessary. If k = 1,000 cycles are needed to achieve stationarity, then 
five imputations can be produced in 5,000 cycles, which even for a large data 
set requires no more than a few hours on a personal computer. 

In addition to deciding how many cycles are needed, the user must also 
specify Bayesian prior distributions for the covariance matrices ? and x. Bayes- 
ian procedures, which are becoming increasingly popular in many areas of 
statistical analyses, treat unknown parameters as random variables and assign 
prior probability distributions to them to reflect one’s knowledge of or belief 
about the parameters before the data are seen. An excellent introduction to the 
Bayesian statistical paradigm was given by Novick and Jackson (1974); for a 
modern overview of Bayesian modeling and computation, see Gelman, Rubin, 
Carlin, and Stem (1995). Some statisticians tend to prefer Bayesian procedures 
on principle, whereas others avoid them on principle. I hold a pragmatic view, 
accepting the prior distribution simply as a mathematical device that allows 
one to generate the imputations in a principled fashion. In applications, I like 
to use prior distributions that are weak or highly dispersed, reflecting a state 
of relative ignorance about model parameters. Weak priors tend to minimize 
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the subjective influence of the prior, allowing the observed data to speak for 
themselves. 

The prior distribution most commonly applied to a covariance matrix is 
the inverted Wishart distribution. The Wishart, a natural generalization of the 
chi-square to random matrices, is discussed in standard texts on multivariate 
analysis (e.g., Anderson, 1984; Johnson & Wichern, 1992). The prior distri- 
bution for Z is 

Z-' - W(a, B ) ,  (12.7) 

where W(a, B) denotes a Wishart with a degrees of freedom and scale B.  The 
scale is a symmetric, positive definite matrix with the same dimensions (r X r) 
as 2. The degrees of freedom, which should be greater than or equal to r ,  
govern the spread or variability; lower values of a make the distribution more 
dispersed. The user of PAN must provide numeric values for a and B - ' .  Our 
usual practice is to set a = r to make the prior as dispersed as possible and 
then to set B-' = a$, where 3 is a reasonable prior guess or estimate of C. If 
a guess for C. is unavailable, the data themselves may be used to obtain one. 
Yucel and Schafer (1998) recently developed a new expectation-maximization 
algorithm for calculating maximum-likelihood estimates of the parameters f3, 
?, and 2, from the incomplete data. Running this EM algorithm before the 
Gibbs sampler is an excellent way to obtain a reasonable guess for 2.  

In a similar fashion, I also use inverted Wishart prior distributions for the 
between-subjects covariance matrix 9. If 9 is unstructured, one assumes ?-' 
- W(c, D )  where D is a qr X qr matrix and c > qr. My usual practice is to set 
c = qr and D-' = c@, where @ is a prior guess or estimate of 9. If 9 is taken 
to be block diagonal as in Equation 12.6, then independent inverted Wishart 
prior distributions are applied to the nonzero blocks, ?,-' - W(cJ, D,), j = 1, 
. . . , r, where cJ 2 q. To make the priors weak, one sets c, = q and DJ-' = 

c,@~ where qJ is an estimate or guess for JI,. The EM algorithm described by 
Yucel and Schafer (1998) provides a maximum-likelihood estimate for an un- 
structured + or estimates of the submatrices 9, . . . , 9, when ? is block 
diagonal. 

An Example: Exptamies and Alcohol Use in the Adolescent 
Alcohol Prevention Trial 

The Adolescent Alcohol Prevention Trial (AAPT) was a longitudinal school- 
based intervention study of substance use carried out in the Los Angeles area 
(Hansen Q Graham, 1991). In one panel of AAPT, attitudes and behaviors 
pertaining to the use of alcohol, tobacco, and marijuana were measured by self- 
report questionnaires administered yearly in Grades 5- 10. The data exhibit 
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typical rates of uncontrolled nonresponse due to absenteeism, attrition, and so 
on, which I assume to be MAR. This assumption has been given careful con- 
sideration by the researchers and appears to be plausible; for example, much 
of the attrition is due to students moving to other schools or districts, which 
is at most only weakly associated with substance use patterns (Graham et al., 
1994). 

In addition to this uncontrolled nonresponse, large amounts of tmly MAR 
missing data (MCAR, in fact) arose by design. The AAPT study made use of an 
innovative three-form design in which each student received only a subset of 
the items in any year, as described in chapter 11 of this volume, by Graham, 
Taylor, and Cumsille. In some years, certain items were omitted entirely. For 
the present analysis, I examine a cohort of m = 3,574 children and focus at- 
tention on three variables: “drinking,” a composite measure of self-reported 
alcohol use; POSCON, a measure of the degree to which the student perceives 
that alcohol use has positive consequences; and NEGCON, a measure of the 
perceived negative consequences of use. Drinking appeared on the question- 
naire every year, where POSCON was omitted in Grade 8 and NEGCON was 
omitted in Grades 8-10. Missingness rates for the three variables by grade are 
shown in Table 12.1; observed means and standard deviations appear in 
Table 12.2. 

My analysis will focus on the possible influences of POSCON and 
NEGCON on drinking. Without missing data, it would be straightforward to 
build a growth model for drinking that includes the expectancy measures 
POSCON and NEGCON as time-varying covariates. Current software for mul- 
tilevel models cannot accommodate missing values on covariates, however, so 
I first use PAN to jointly impute the missing values for drinking, POSCON, 
and NEGCON. 

Notice in Table 12.2 that both the average level of drinking and its variation 
increase dramatically over time. This is somewhat problematic, because stan- 
dard growth models-and the multivariate model used by PAN-assume con- 
stant variance in a response over time. To make the assumption of constant 

TABLE 1 2 . 1  

Missingness Rates I%! for Three Variables by Grade 

GRADE 

VARIABLE 5 6 7 a 9 10 

Drinking 2 24 24 33 35 44 

POSCON 47 55 62 100 66 63 

NEGCON 48 56 62 100 100 100 

Note. POSCON = positive consequences; NEGCON = negative consequences. 
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variance more plausible, I transformed drinking by taking its logarithm (after 
adding a small constant to ensure that all values were positive). After this trans- 
formation, the increase in variation became much less noticeable. The log- 
transformed version of drinking was used both in the imputation procedure 
and in subsequent analysis described below, because the transformed version 
more closely fit the assumptions of both the imputation procedure and the 
analysis. With multiple imputation, however, it is not necessary for variables to 
be imputed and analyzed on the same scale. Applying transformations at the 
imputation phase can be a highly effective tool for preserving important distri- 
butional features of nonnormal variables, regardless of how the variables are 
later analyzed (Schafer & Olsen, 1998). 

To set up the data for PAN, one fi.rst arranges the responses for each in- 
dividual in the form of a matrix y L  of dimension 6 X 3,  with the rows corre- 
sponding to occasions (Grades 5 ,  . . . , 10) and columns for drinking, POSCON, 
and NEGCON. In devising the imputation model the primary concern is to 
preserve growth in the variable drinking and its potential relationships to the 
expectancy measures. With only six time points, the model for growth must be 
rather simple, so let us posit a linear model with intercepts and slopes randomly 
varying across individuals. That is, we create a model in which drinking, 
POSCON, and NEGCON are each described by a linear trend with a random 
intercept and a random slope, for a total of six random effects in each b,. 
Random intercepts and slopes are specified by placing (1, 1, 1, 1, 1, 1)' and 
(1, 2,  3,  4, 5, 6)T into the columns of X, and 2,. Finally, to incorporate potential 
gender differences, I allow the population average slopes and intercepts for boys 
and girls to vary by adding two additional columns to each X, matrix: sex, X 

(1, 1, 1, 1, 1, and sex, X (1, 2, 3 ,  4, 5 ,  6)*, where sex, is a dummy indicator 
for participant i's gender (0 for girl, 1 for boy). 

In defining a PAN model, there is no particular importance attached to the 
specific coding scheme used to create the design matrices X, and 2,. For ex- 
ample, the linear effect of time could have been expressed as (-5, -3, - 1, 1, 
3, 5)' or any other set of equally spaced scores, and the gender effect sex, could 
have been coded as any two values (e.g., -1 and + I )  rather than as 0 and 1. 
The particulars of the coding scheme affect the precise meaning of the param- 
eters in p, 2, and 9, but these parameters are not of inherent interest-the 
goal at this stage is not to interpret parameters but to impute the missing values 
in y,. Changing the coding scheme in X, and 2, does not change the distribution 
of imputed values, provided that the linear space spanned by the columns of 
these design matrices does not change. 

Table 12.1 indicates that NEGCON is entirely missing for the last 3 years 
of the study It may seem unusual to impute a variable that is entirely missing. 
Under this model the likely values of NEGCON for Grades 8-10 are being 
inferred from two sources: extrapolation from Grades 5-7 on the basis of the 
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assumption of linear growth, and the residual covariances among the three 
response variables in 2,  which are assumed to be constant across time. Neither 
of these assumptions can be effectively tested with the data at hand, so infer- 
ences pertaining to NEGCON are heavily model based. In retrospect, it would 
have been very helpful to collect NEGCON in the final year (Grade 10) to 
provide more stable estimates of this variable’s growth. 

Before running the Gibbs sampler, I first obtained initial estimates of the 
unknown parameters p, c, and W by running the EM algorithm. This EM 
procedure, which assumed an unstructured form for W, converged in 134 it- 
erations and took less than 1 h on a 400 MHz Pentium I1 computer. The 
resulting maximum-likelihood estimates for 2, and iP were then used to for- 
mulate weak prior distributions as described in the Computational Algorithms 
section. 

Because of the high rates of missing information, I anticipated that the 
Gibbs sampler would converge slowly To assess convergence, I ran it for an 
initial 2,000 cycles and examined time series plots and sample autocorrelations 
for a variety of parameters. As anticipated, the elements of W pertaining to the 
slopes and intercepts of NEGCON were among the slowest to converge because 
of the extreme sensitivity of these parameters to missing data. On the basis of 
this exploratory run, it appeared that several hundred cycles might be sufficient 
to achieve approximate stationarity. The Gibbs sampler was then run for an 
additional 9,000 cycles, with the simulated value of Y,,, stored at cycles 2,000, 
3,000, . . . , 11,000. Autocorrelations estimated from cycles 1,001 - 1 1,000 ver- 
ified that the dependence in all components of 8 had indeed died down by lag 
200, so the 10 stored imputations could be reasonably regarded as independent 
draws from P(Y,,,IY0,,J. The entire imputation procedure took less than 2 hr 
with a 400 MHz Pentium 11. 

After imputation, the data were analyzed by a conventional linear growth- 
curve model for the logarithmically transformed drinking. The model was sim- 
ilar to the one used for imputation, except that POSCON and NEGCON now 
appear as time-varymg covariates rather than responses. The model included 
an intercept and fixed effects for gender, grade, gender X grade, POSCON, and 
NEGCON, plus random intercepts and slopes for grade. Time was coded as (1, 
2,  3, 4, 5 ,  6)’, and gender was expressed as a dummy indicator (0 for girls, 1 
for boys). Parameter estimates were computed for each imputed data set using 
a procedure equivalent to that used by standard packages such as HLM. 

Finally, the 10 sets of fixed-effects estimates and their standard errors were 
then combined using Rubin’s (1987) rules for multiple-imputation inference for 
scalar estimands. These rules are summarized as follows. Let Q denote the 
quantity to be estimated, in this case a regression coefficient. Let B ( ’ )  denote 
the estimate of Q from the j th  imputed data set, and U, its squared standard 
error ( j  = 1, 2, . . . , m). The overall estimate of Q is simply the average 
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(12.8) 

To obtain a standard error for g, one calculates the between-imputation variance 
€3 = (m - l)-lS(G(J) - 8)' and the within-imputation variance 0 = m - l ~ U ( J ) .  
The estimated total variance is 

T = (1 + m-')B + 0, (12.9) 

and tests and confidence intervals are based on a Student's t approximation 

(12.10) 

with degrees of freedom 

(1 + m-')B 

The ratio r = (1 + m-')B/D measures the relative increase in variance due to 
missing data, and the rate of missing information in the system is approximately 
A = r/(l + r ) .  A more refined estimate of this rate is 

r + 2/(v + 3) 

l + r  
A =  (12.11) 

The results of this procedure are summarized in Table 12.3, which shows 
the overall estimates, standard errors, degrees of freedom for the t approxima- 
tion, and estimated percentage rates of missing information. All coefficients are 
highly statistically significant. The high rates of missing information indicate 
that the inferences for all coefficients (except sex) may be highly dependent on 
the form of the imputation model and the MAR assumption. The latter as- 
sumption is not particularly troubling for these data because the majority of 

TABLE 1 2 . 3  

Estimad Coefficients (Est.), Standard Emrs, D e g m s  of Freedom, and 
Percentage Missing lnibrmation From Multiply Imputed 
Growth-Curve Analysis 

VARIABLE EST. SE df % MlSSfNG 

Intercept -2.572 0.084 19 71 

Sex (0 = female, 1 = male) 0.370 0.046 324 17 

Grade (1 = 5th, . . . , 6 = 10th) 0.386 0.011 35 53 

Sex x grade -0.105 0.013 88 33 

POSCON 0.549 0.023 17 76 

NEGCON -0.090 0.023 15 80 

Note. POSCON = positive consequences; NEGCON = negative consequences. 
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missing values are missing by design. Certain assumptions of the imputation 
model, however-in particular, the assumed linear growth for NEGCON and 
constancy of the residual covariances across time-are not really testable from 
the observed data, so results from this analysis should be interpreted with 
caution. 

Despite these caveats, the estimates in Table 12.3 provide some intriguing 
and plausible interpretations about the behavior of this cohort. The positive 
coefficient for sex indicates that boys reported higher average rates of alcohol 
use than girls in the initial years of the study. The negative effect of sex X 

grade, however, shows that girls exhibit higher rates of increase than boys, so 
that the girls’ average overtakes the boys’ by Grade 8. The large positive effect 
of POSCON indicates that increasing perceptions about the positive conse- 
quences of alcohol use are highly associated with increasing levels of reported 
use. The negative coefficient for NEGCON suggests that increasing beliefs about 
negative consequences do tend to reduce level of use, but the effect is much 
smaller than that of POSCON. These results are consistent with those of pre- 
vious studies (e.g., MacKinnon et al., 1991) that demonstrate that perceived 
positive consequences may be influential determinants of substance use behav- 
ior, but beliefs about negative consequences have little or no discernible effect. 

Discussion 

The multivariate mixed model (Equation 12.3) used by PAN is a natural exten- 
sion of univariate growth models, which are popular in the analysis of longi- 
tudinal data. The imputation procedures described here are appropriate for 
longitudinal analyses with partially missing covariates. These methods are also 
appropriate for multivariate cross-sectional studies in which units are nested 
within naturally occurring groups (e.g., children within schools). The algorithm 
and software described in this chapter provide a principled solution to missing- 
data problems for this important and frequently occurring class of analyses. 

The imputation model and Gibbs sampler can be extended in a number of 
important ways. One extension pertains to models with additional random ef- 
fects due to higher levels of clustering; this would arise, for example, in mul- 
tivariate studies in which individuals are grouped into larger units and multiple 
observations on individuals are taken over time. Another useful extension per- 
tains to columns of y, that are necessarily constant across the rows 1, . . . , n,. 
In longitudinal studies, these columns would represent covariates that do not 
vary over time; in clustered applications, they would represent characteristics 
of the clusters rather than the units nested with them. If these covariates have 
no missing values, they can be handled under the current model by simply 
moving them to the matrix X,. When missing values are present, however, they 
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must be explicitly modeled for purposes of imputation. If one imposes a simple 
parametric distribution on these covariates (e.g., multivariate normal), then it 

is straightforward to extend the Gibbs sampling procedure to impute these as 
well. 

Another useful extension involves interactions among the columns of y,. 
The multivariate normal model allows only simple linear associations among 
the variables Y l ,  . . . , Y,, but in many studies one would like to preserve and 
detect certain nonlinear associations and interactions. In the AAPT example, it 
may have been useful to see whether the strong effect of POSCON on drinking 
may have been increasing or decreasing over time; the imputation model, how- 
ever, imputed the missing values under an assumption of a constant POSCON 
X drinking association. Extensions of the multivariate model to allow more 
elaborate fixed associations, such as POSCON X drinking X grade, or random 
associations, such as POSCON X drinking X participant, are an important topic 
for future research. 

In the current PAN model, the rows of y L  are assumed to be conditionally 
independent given b, with common covariance matrix C. This assumption has 
been relaxed by Jennrich and Schluchter (1986), Lindstrom and Bates (1988), 
and others in the univariate case to allow a residual covariance matrix of the 
form a’v,, where V, has a simple (e.g., autoregressive or banded) pattern de- 
pendent on one or more unknown parameters. Extensions of these patterned 
covariance structures to a multivariate setting tend to produce models and al- 
gorithms that are complex even apart from missing data. For example, the 
obvious extension of vec(E,) - “0, (C @ 01 to vec(E,) - “0, (2 @ VJl 
seems too restrictive for many longitudinal data sets, because the response var- 
iables y,, . . . , Y,  are then required to have identical autocorrelations. Account- 
ing for autocorrelated residuals in a sensible manner may prove to be a daunting 
task in the multivariate case. In practice, nonzero correlations among the rows 
of E, may arise because of a misspecified model for the mean structure over 
time. The problem may sometimes be reduced or eliminated by including ad- 
ditional (e.g., higher order polynomial) terms for time in the covariate matrices 
X, or 2,. 
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Computational Strategies for Multivariate
Linear Mixed-Effects Models

With Missing Values

Joseph L. SCHAFER and Recai M. YUCEL

This article presents new computational techniques for multivariate longitudinal or
clustered data with missing values. Current methodology for linear mixed-effects models
can accommodate imbalance or missing data in a single response variable, but it cannot
handle missing values in multiple responses or additional covariates. Applying a multivariate
extension of a popular linear mixed-effects model, we create multiple imputations of missing
values for subsequent analyses by a straightforward and effective Markov chain Monte Carlo
procedure. We also derive and implement a new EM algorithm for parameter estimation
which converges more rapidly than traditional EM algorithms because it does not treat
the random effects as “missing data,” but integrates them out of the likelihood function
analytically. These techniques are illustrated on models for adolescent alcohol use in a
large school-based prevention trial.

Key Words: EM algorithm; Longitudinal data; Markov chain Monte Carlo; Multiple
imputation.

1. INTRODUCTION

1.1 THE MODEL

Multivariate longitudinal or clustered data are characterized by multiple responses
measured (a) at multiple occasions for each subject or (b) for subjects nested within naturally
occurring groups. Examples include multiple exam or test scores recorded for students
across time, and multiple items at a single occasion for students in more than one school.
Sensible methods for analyzing such data will appreciate both the relationships among the
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response variables and potential correlations among observations from the same individual
or cluster. This article discusses a multivariate version of a popular linear mixed-effects
model for longitudinal or clustered data and applies this model to datasets with missing
values.

Let yi denote an ni × r matrix of multivariate responses for sample unit i, i =

1, 2, . . . ,m, where each row of yi is a joint realization of variables Y1, Y2, . . . , Yr. We
consider situations where portions of y1, . . . , ym are ignorably missing in the sense de-
scribed by Rubin (1976) and Little and Rubin (1987). Our model for the complete data
is

yi = Xiβ + Zibi + εi, (1.1)

where Xi (ni × p) and Zi (ni × q) are known covariate matrices, β (p × r) is a matrix
of regression coefficients common to all units, and bi (q × r) is a matrix of coefficients
specific to unit i. In popular terminology, β and bi are called “fixed effects” and “random
effects,” respectively. We assume that the ni rows of εi are independently distributed as
N(0,Σ), and that the random effects are distributed as vec(bi) ∼ N(0,Ψ) independently
for i = 1, . . . ,m (the “vec” operator vectorizes a matrix by stacking its columns). Without
conditioning on b1, . . . , bm, the implied model for vec(yi) is normal with mean vec(Xiβ)

and covariance matrix

W−1
i = (Ir ⊗ Zi)Ψ(Ir ⊗ Zi)

T + (Σ⊗ Ini
). (1.2)

In longitudinal applications, times of measurement may be incorporated into Xi and Zi,
allowing relevant aspects of the growth curves (e.g., intercepts and slopes) to vary by subject.

1.2 PREVIOUS WORK

The univariate (r = 1) version of our model,

yi ∼ N(Xiβ, ZiψZ
T
i + σ2Ini

), (1.3)

and more general univariate models have been extensively treated by Laird and Ware (1982);
Jennrich and Schluchter (1986); Laird, Lange, and Stram (1987); Lindstrom and Bates
(1988); and others. A variety of software is available for fitting these linear mixed-effects
models. Commercial packages include HLM (Bryk, Raudenbush, and Congdon 1996) and
MLn (Multilevel Models Project 1996). Similar procedures are now found in SAS (Littell,
Milliken, Stroup, and Wolfinger 1996), S-Plus (Mathsoft, Inc. 1997), and STATA (Stata
Corporation 1997). These programs can handle unbalanced longitudinal data, with mea-
surements taken at an arbitrary set of time points for each subject. Responses that are
missing, either unintentionally or by design, are ignored in the computations along with the
corresponding rows of Xi and Zi. An important limitation of these methods is that missing
values must be confined to the single response variable; missing values on predictors are
not allowed.
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Despite the popularity of single-response models, multivariate versions have received
scant treatment in the literature. A model similar to (1.1) was considered by Reinsel (1984)
who derived closed-form estimates with completely observed yi and balanced designs. More
recently, Shah, Laird, and Schoenfeld (1997) extended the EM-type algorithm of Laird and
Ware (1982) to a bivariate (r = 2) setting. In common econometric terminology, their model
is analogous to “seemingly unrelated regression” (Zellner 1962) whereas ours corresponds
to “standard multivariate regression.” The added generality of the seemingly unrelated
model comes at a high cost, making the resulting algorithms impractical for more than a
few response variables. In certain situations, it may be possible to recast the multivariate
model as a univariate one by stacking the columns of yi and applying existing software
(e.g., SAS Proc Mixed) with a user-specified covariance structure. In most applications,
however, this approach quickly becomes impractical. Examples for only r = 2 response
variables with complete data (Shah, Laird, and Schoenfeld 1997) and incomplete data
(Verbeke and Molenberghs 2000) require complicated SAS macros. As the number of
variables and number of individuals or time-points per cluster grow, the dimension of the
response increases rapidly, and usage of SAS Proc Mixed becomes practically impossible.

Perhaps one reason why little attention has been paid to the multivariate models is that
it is often natural to regard one of the variables as a response and the others as potential
predictors. When the predictors have missing values, however, joint modeling of the multiple
responses becomes helpful or even necessary; some type of modeling assumptions must
be applied to Y1, . . . , Yr to achieve an efficient solution, even if the parameters of interest
pertain only to the conditional model for one variable given the others.

In panel studies where individuals are assessed at a common set of occasions, models
equivalent to ours may be formulated as latent growth curves (McArdle 1988; Meredith
and Tisak 1990) and fit with structural-equations software. Two programs for structural
equations, Mx (Neale 1994) and Amos (Arbuckle 1995), perform ML estimation from
datasets with missing values. In principle, missing values can also be accommodated in other
structural-equations software using a multiple groups approach (Allison 1987; Muthén,
Kaplan, and Hollis 1987) but the implementation can be tedious. A disadvantage of the
latent growth-curve formulation is that the measurements must be taken at a small number
of common time points for all subjects. The method does not apply to clustered situations
where the rows of yi represent subjects nested within a group.

Schafer (1997) derived likelihood-based and Bayesian methods for independent multi-
variate observations with arbitrary patterns of missing values. In certain cases, this method-
ology can be applied to longitudinal data by treating the same outcome at different time
points as distinct variables. Because this approach does not take into account the longi-
tudinal structure, it may introduce more parameters than can be well estimated from the
observed data.

1.3 SCOPE OF THIS ARTICLE

In the following sections, we develop computational techniques for applying the
multivariate linear mixed model (1.1) to datasets with missing values. Two approaches
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are discussed. The first one, described in Section 2, is to generate multiple imputations for
the missing values using Markov chain Monte Carlo (MCMC). We extend the methodology
of Schafer (1997) to groups of correlated multivariate observations, making it applicable to
a variety of cluster samples and panel studies. In one sense, the material in Section 2 could
be regarded as straightforward application of existing MCMC methods described elsewhere
(e.g., Gilks, Richardson, and Spiegelhalter 1996). However, many of the the details of our
implementation—especially where missing data are involved—might not be obvious even
to readers familiar with MCMC. With careful attention to these computational details, the
method is very effective and may be applied to datasets that are quite large.

Section 3 describes a second set of techniques which produce maximum-likelihood
estimates or posterior modes. These methods may be used to estimate the parameters of
model (1.1) directly from the incomplete data. They may also be used in conjunction with
the MCMC methods of Section 2, helping the user to obtain good quality starting values and
to select prior distributions for unknown variance components. Mode-finding algorithms are
also helpful for testing model fit. The major innovation of Section 3 is a newly formulated
EM algorithm which performs substantially better than previous methods.

Section 4 illustrates our methods by applying them to data from the Adolescent Alcohol
Prevention Trial, a longitudinal study of substance-use attitudes and behaviors. Finally,
Section 5 discusses the limitations of our model and future extensions. Procedures discussed
here will be made available in a stand-alone program called PAN (Schafer and Yucel 2001)
which operates in the Windows environment. PAN can be downloaded free of charge from
http://www.stat.psu.edu/∼jls/misoftwa.html.

2. METHODS FOR MULTIPLE IMPUTATION

2.1 MULTIPLE IMPUTATION BY MCMC

Suppose that portions of Y = (y1, y2, . . . , ym) are ignorably missing. Let yi(obs)

and yi(mis) denote the observed and missing parts of yi, respectively, and let Yobs =

(y1(obs), y2(obs), . . . , ym(obs)) and Ymis = (y1(mis), y2(mis), . . . , ym(mis)) denote all observed
and missing responses. Unknown parameters are denoted by θ = (β,Σ,Ψ). For the fixed
effects and residual covariances, we assume that β ∈ Rpr and Σ > 0. Depending on the
application, we may allow Ψ to be either (a) unstructured or (b) block diagonal with r

nonzero blocks of size q × q corresponding to the individual columns of bi.
Multiple imputation, developed by Rubin (1987, 1996), is an increasingly popular

method for handling missing values. For multiple imputation, we generate M independent
draws Y (1)

mis , . . . , Y
(M)

mis from a posterior predictive distribution for the missing data,

P (Ymis |Yobs) =

∫
P (Ymis |Yobs, θ)P (θ |Yobs) dθ, (2.1)

where P (θ |Yobs) is the observed-data posterior density, which is proportional to the product
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of a prior density π(θ) and the observed-data likelihood function

L(θ |Yobs) =

∫
L(θ |Y ) dYmis.

After imputation, the resulting M versions of the complete data are analyzed separately
by complete-data methods, and the results are combined using simple arithmetic to obtain
inferences that effectively incorporate uncertainty due to missing data. As shown by Rubin
(1987), quality inferences can often be obtained with a very small number (e.g., M = 5)
of imputations. Methods for combining the results of the complete-data analyses are given
by Rubin (1987, 1996) and reviewed by Schafer (1997, chap. 4).

When a model is used as a device for imputation, the meaning or interpretation of its
parameters is not crucial; the utility of the model lies in its ability to predict and simu-
late missing observations. A sensible imputation method for multivariate longitudinal or
clustered data should preserve basic relationships among variables and correlations among
observations from the same subject or cluster. The model (1.1) is capable of preserving these
effects. In many cases, post-imputation analyses will be based on models less elaborate;
for example, a model for one response variable given the others. In other cases, effective
analyses may be carried out under a model somewhat different from that used to impute
missing values. The performance of multiple imputation when the imputer’s and analyst’s
models differ was addressed by Meng (1994) and Rubin (1996). In practice, inference by
multiple imputation is fairly robust to departures from the imputation model because that
model effectively applies not to the entire dataset but only to its missing parts. We have used
(1.1) as the basis for imputing binary and ordinal responses, rounding off the continuous
imputed values to the nearest category. Simulations have shown that the biases incurred by
such rounding procedures may be minor (Schafer 1997). At best this is only an approximate
solution; a more principled but complicated approach may involve introducing random ef-
fects into the general location model for multivariate data with continuous and categorical
variables (Olkin and Tate 1961; Schafer 1997).

Except in trivial special cases, the posterior predictive distribution (2.1) for our model
cannot be simulated directly. We create random draws of Ymis from P (Ymis | Yobs) by
techniques of Markov chain Monte Carlo (MCMC). In MCMC, one generates a sequence of
dependent random variates whose distribution converges to the desired target. Overviews of
MCMC were given by Gelfand et al. (1990); Smith and Roberts (1993); Tanner (1993); and
in the chapters of Gilks, Richardson, and Spiegelhalter (1996). Schafer (1997) described
MCMC for multivariate continuous and categorical missing data problems, but did not
consider mixed models with random effects. Applications of MCMC to univariate linear
mixed models have been made by a number of authors, including Gelfand, Hills, Racine-
Poon, and Smith (1990); Zeger and Karim (1991); Liu and Rubin (1995); and Carlin (1996).
These MCMC methods rely on simplifications that result when the random effects are
assumed known. If B = (b1, b2, . . . , bm) were known, then inferences about θ would
separate into two simpler problems: (a) a normal-theory inference about Ψ based on B,
and (b) a normal-theory inference about (β,Σ) based on (yi − Zibi), i = 1, . . . ,m. This
simplification is also an underlying feature of conventional EM algorithms for random-
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effects model as well, to be discussed in Section 3. Unlike EM, however, MCMC allows
us to circumvent manipulations on large matrices by alternately conditioning on simulated
values of the random effects and the missing data.

2.2 A GIBBS SAMPLER

In a slight abuse of notation, let A∗ ∼ P (A) denote simulation of a random variate A∗

from a distribution or density function P (A). Consider an iterative simulation algorithm
in which current versions of the unknown parameters θ(t) = (β(t),Σ(t),Ψ(t)) and missing
data Y

(t)
mis are updated in three steps: first,

b
(t+1)
i ∼ P

(
bi | Yobs, Y

(t)
mis , θ

(t)
)

(2.2)

independently for i = 1, . . . ,m; next,

θ(t+1) ∼ P
(
θ | Yobs, Y

(t)
mis , B

(t+1)
)

; (2.3)

and finally,

y
(t+1)
i(mis) ∼ P

(
yi(mis) | Yobs, B

(t+1), θ(t+1)
)

(2.4)

for i = 1, . . . ,m. Given starting values θ(0) and Y
(0)

mis , these steps define one cycle of
an MCMC procedure called a Gibbs sampler. Executing the cycle repeatedly creates se-
quences {θ(1), θ(2), . . .} and {Y (1)

mis , Y
(2)

mis , . . .} whose limiting distributions are P (θ | Yobs)

and P (Ymis |Yobs), respectively.
Implementing (2.3) requires a prior distribution for θ. It is known that in mixed-effects

models, improper prior distributions for the covariance components may lead to Gibbs
samplers that do not converge to proper posteriors, even though each step of the cycle
is well-defined. For this reason, proper prior distributions for the covariance matrices are
highly recommended. For simplicity, we apply independent inverted Wishart priors Σ−1 ∼
W (ν1,Λ1) and Ψ−1 ∼ W (ν2,Λ2), where W (ν,Λ) denotes a Wishart variate with ν > 0
degrees of freedom and meanνΛ > 0. This prior is appropriate for a model with unstructured
Ψ; versions for block-diagonal Ψ will be discussed later. These priors exist provided that
Λ1 > 0, Λ2 > 0, ν1 ≥ r and ν2 ≥ qr. In choosing values for the hyperparameters, it
is helpful to regard ν−1

1 Λ−1
1 and ν−1

2 Λ−1
2 as prior guesses for Σ and Ψ with confidence

equivalent to ν1 and ν2 degrees of freedom, respectively. Small values for ν1 and ν2 make
the prior densities relatively diffuse, reducing their impact on the final inferences. For β,
we use an improper uniform “density” over Rpr.

Under these priors, each of the steps (2.2)–(2.4) is derived by straightforward applica-
tion of Bayes’ theorem. In our model, the pairs (yi, bi) are distributed as

vec(yi) | bi, θ ∼ N( vec(Xiβ + Zibi), (Σ⊗ Ini) ),

vec(bi) | θ ∼ N(0,Ψ)
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independently for i = 1, . . . ,m. It follows that

vec(bi) |yi, θ ∼ N(vec(b̃i), Ui),

where

vec(b̃i) = Ui (Σ
−1 ⊗ ZT

i ) vec(yi −Xiβ), (2.5)

Ui = (Ψ−1 + (Σ−1 ⊗ ZT
i Zi) )

−1. (2.6)

Simulation of θ in (2.3) proceeds as follows: First, drawΨ−1 from a Wishart distribution
with degrees of freedom ν′

2 = ν2 + m and scale Λ′
2 = (Λ−1

2 + BTB)−1. Next, calculate
the ordinary least-squares coefficients

β̂ =

(
m∑

i=1

XT
i Xi

)−1( m∑

i=1

XT
i (yi − Zibi)

)

and residuals ε̂i = yi−Xiβ̂−Zibi, and draw Σ−1 from a Wishart distribution with degrees
of freedom ν′

1 = ν1 − p+
∑m

i=1 ni and scale Λ′
1 =

(
Λ−1

1 +
∑m

i=1 ε̂
T
i ε̂i
)−1

. Finally, draw
β from a multivariate normal distribution centered at β̂ with covariance matrix Σ ⊗ V ,
where V =

(∑m
i=1 X

T
i Xi

)−1
. For simulating β, it is helpful to note that if G and H are

upper-triangular square roots of Σ and V , respectively (GTG = Σ and HTH = V ), then
G⊗H is an upper-triangular square root of Σ⊗ V .

To carry out the final step (2.4) of the Gibbs sampler, notice that the rows of εi = yi −
Xiβ−Zibi are independent and normally distributed with mean zero and covariance matrix
Σ. Therefore, in any row of εi, the missing elements have an intercept-free multivariate
normal regression on the observed elements; the slopes and residual covariances for this
regression can be quickly calculated by inverting the square submatrix of Σ corresponding
to the observed variables. Drawing the missing elements in εi from these regressions and
adding them to the corresponding elements of Xiβ + Zibi completes the simulation of
yi(mis).

2.3 IMPLEMENTATION ISSUES

The Gibbs sampler defined by (2.2)–(2.4) is not the only one that could be implemented
for this problem; as noted by Liu and Rubin (1995) in the univariate case, a wide variety of
alternative MCMC algorithms are possible. If any of the steps (2.2)–(2.4) could be carried out
without conditioning on simulated values of Ymis or B, then the algorithm could be made
to converge in fewer iterations. De-conditioning may greatly increase the computational
cost per iteration, however, and some limited experience suggests that the additional effort
required to do so is not worthwhile. With modern computers, iterations of (2.2)–(2.4) can
be performed quickly even with the large datasets provided that sufficient physical memory
is available to store Yobs, Y

(t)
mis , and the covariate matrices Xi and Zi.

The convergence behavior of this algorithm is governed by two factors: the amount of
information about θ carried in Ymis relative to Yobs; and the degree to which the random
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effects bi can be estimated from yi. If the missing portions of yi exert high leverage over
components of θ, or if the bi are poorly estimated (i.e., if the within-unit precision matrices
Σ−1 ⊗ZT

i Zi tend to be small relative to ψ−1), then convergence can be slow. Convergence
may also be slow when the number of subjects m is large, because for large m the posterior
distribution for Ψ given b1, . . . , bm becomes very tight, causing the drawn value for Ψ to be
close to its previous value. When producing multiple imputations, slow convergence is not
disastrous because in most cases only a few independent draws of Ymis are needed. If the
algorithm is believed to achieve approximate stationarity byT cycles, thenM imputations of
Ymis can be generated in MT cycles. Convergence can be informally assessed by examining
time-series plots, autocorrelations, and so on. for individual elements or functions of θ. In
particular, one should pay close attention to the elements ofΨ because these parameters tend
to exhibit high autocorrelations. Formal and informal convergence diagnostics for MCMC
were discussed by Gilks, Richardson, and Spiegelhalter (1996) and Schafer (1997, chap.
4).

Notice that any row of yi that is completely missing may be omitted from consideration,
along with the corresponding rows ofXi andZi, without changing the form of the complete-
data model (1.1). Ignoring these rows will eliminate unnecessary computation at each cycle
and reduce the rate of missing information, speeding the overall convergence. These rows of
data may be restored at the final imputation step (2.4) to produce a fully completed dataset.

2.4 PRIOR GUESSES AND ALTERNATIVE COVARIANCE STRUCTURES

When specifying values for the hyperparameters, our usual practice is to set ν1 = r and
ν2 = qr to make the priors as dispersed as possible and minimize their subjective influence.
We typically set Λ−1

1 = ν1Σ̂ and Λ−1
2 = ν2Ψ̂, where Σ̂ and Ψ̂ are reasonable prior guesses

for Σ and Ψ. If no prior guesses are available, the data themselves may be used to obtain
them; the EM algorithms of Section 3 are excellent tools for pursuing these guesses.

Excellent prior guesses for Σ and Ψ may also be obtained by temporarily supposing
that Σ is diagonal and Ψ is block-diagonal. Under these conditions, the multivariate model
separates into independent univariate models for each of the r columns of yi, and ML
or RML estimates of the variance components may be quickly calculated using existing
software for linear mixed-effects models. When data are sparse and some aspects of Σ or Ψ
are not well estimated, diagonal and block-diagonal prior guesses for Σ and Ψ, respectively,
tend to stabilize the computational procedures in much the same way that ridge regression
stabilizes estimated coefficients when collinearity is present. The use of ridge-like priors
with incomplete and sparse multivariate data was described by Schafer (1997).

When modeling a large number of response variables at once, it may be advantageous to
restrictΨ to a block-diagonal structure—not only for the purpose of obtaining prior guesses,
but also when running the Gibbs sampler itself. If Ψ is block-diagonal, then independent
inverted Wishart prior distributions may be applied to the q × q nonzero blocks, Ψ−1

j ∼
W (νj ,Λj) for j = 1, 2, . . . , r. Weak priors are obtained by setting νj = q andΛ−1

j = νjΨ̂j ,
where Ψj is an estimate or prior guess for Ψj . The distributions for these blocks in step
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(2.3) become Ψ−1
j ∼ W (ν′

j ,Λ
′
j), where ν′

j = νj +m, Λ′ −1
j = Λ−1

j +
∑m

i=1 bijb
T
ij , and bij

is the jth column of bi.
The choice between an unstructured or block-diagonalΨwill depend on both theoretical

and practical considerations. A block diagonal structure indicates no a priori associations
between the random effects for any two response variables Yj and Yj′ . In a multivariate
cluster sample with many variables, many units per cluster, but relatively few clusters, it may
simply not be possible to estimate covariances among the random effects for all response
variables. It is important to note that even if Ψ is block-diagonal, the columns of bi are not
independent in an a posteriori sense because (2.6) is not block-diagonal. A formal likelihood
ratio test to choose between the unstructured and block-diagonal forms for ψ is possible
with the EM procedures in Section 3.

3. ALGORITHMS FOR MODE-FINDING

3.1 IMPORTANCE OF MODE-FINDING PROCEDURES

The Gibbs sampler of Section 2 is an effective method for imputing missing values
in the yi matrices under the multivariate model (1.1). In principle it may also be used to
simulate Bayesian estimates for θ, but in many cases estimates are more easily found with
EM. Deterministic parameter estimation or mode-finding algorithms are a desirable accom-
paniment to MCMC simulation procedures (Gelman, Carlin, Stern, and Rubin 1995; Carlin
1996; Schafer 1997). MCMC requires starting values for the unknown model parameters;
ML estimates can provide excellent starting values. As described earlier, ML estimates
may provide guidance for specifying prior distributions required by MCMC. Finally, an
algorithm for ML estimation can help to reveal pathological situations where the likelihood
function is unusually shaped, with multiple modes or suprema on the boundary.

The first method is a Fisher scoring procedure which applies when y1, . . . , ym are
fully observed. The second method, discussed in Section 3.3, is a new EM algorithm which
incorporates Fisher scoring into the M-step; this procedure may be used when the response
matrices yi are partially missing. This new EM algorithm tends to converge more quickly
than conventional EM algorithms for mixed-effects models because the random effects are
not included in EM’s formulation of “missing data.” Implementation of the new algorithm
is somewhat more complicated, but the per-iteration execution time compares favorably to
that of conventional EM in many examples. In a few cases, this new algorithm is less stable
than conventional EM. A hybrid procedure that combines stability with rapid convergence
is described in Section 3.4.

3.2 FISHER SCORING

After the general presentation of EM by Dempster, Laird, and Rubin (1977), EM and
its extensions have been extensively applied to the univariate model (1.3). EM is designed
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for ML estimation with incomplete data and in situations that can be formulated as missing-
data problems. Conventional applications of EM to mixed-effects models treat the random
coefficients as missing data, capitalizing on a factorization of the augmented-data likelihood,

L(θ |Y,B) = L(Ψ |B)L(β, σ2 |Y,B). (3.1)

The overall maximum of (3.1) with respect to θ can be found by maximizing each of the
two factors separately, neither of which requires iteration. Each cycle of EM maximizes the
expected logarithm of (3.1), where the expectation is taken with respect to the conditional
distribution of B given Y with the parameters fixed at their current estimates. With some
effort, these EM conventional algorithms for the univariate model can be extended to the
multivariate case. Shah, Laird, and Schoenfeld (1997) extended the EM-type algorithm
of Laird and Ware (1982) to a bivariate (r = 2) response, both for complete yi and for
incomplete yi.

Conventional EM algorithms which operate on (3.1) may suffer from very slow con-
vergence. We have found that when there are no missing values in yi—or, more generally,
when entire rows in yi are missing—the likelihood can be maximized more quickly by
Fisher scoring.

The likelihood function arising from the marginal normal distribution for yi is

L(θ) ∝
m∏

i=1

|Wi|1/2 exp

{
−1

2
δTi Wiδi

}
,

where δi = vec(yi − Xiβ) and Wi is defined by (1.2). Using the relationship |Wi| =

|Σ⊗Ini
|−1|Ψ|−1|Ui| and ignoring constants of proportionality, the logarithm of L becomes

'(θ) = −N

2
log |Σ| − m

2
log |Ψ|+ 1

2

m∑

i=1

log |Ui| −
1
2

m∑

i=1

δTi Wiδi. (3.2)

Fisher scoring updates the current estimate θ(t) by solving the linear system Cθ(t+1) = d,
where C = −E'′′(θ(t)) and d = Cθ(t) + '′(θ(t)). Upon convergence, the final value of
C−1 provides an estimated covariance matrix for θ̂.

For convenience, we take derivatives with respect to β and the nonredundant elements
of Ψ−1 and Σ−1. These matrices can be expressed as

Ψ−1 =

g∑

j=1

ωjGj ,

Σ−1 =

h∑

j=1

σjFj ,

where G1, G2, . . . , Gg and F1, F2, . . . , Fh are known symmetric matrices of dimensions
rq × rq and r × r, respectively. The number of free parameters in Ψ is g = rq(rq + 1)/2
when Ψ is unstructured and g = rq(q+1)/2 when it is block-diagonal. The first derivatives
of '(θ) are ∂'/∂vec(β) = −Γ−1vec(β − β̃),

∂'

∂ωj
=

1
2

m∑

i=1

tr
(
Ψ− Ui − vec(b̃i)vec(b̃i)

T
)
Gj ,
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and

∂'

∂σl
=

1
2

m∑

i=1

tr
(
niΣFl − (Fl ⊗ ZT

i Zi)Ui − vec(ε̃i)Flvec(ε̃i)
T
)
,

where vec(ε̃i) = vec(yi − Xiβ − Zib̃i), and β̃ is obtained by generalized least squares
(GLS),

vec(β̃) = Γ

m∑

i=1

(Ir ⊗Xi)
TWi vec(yi),

Γ−1 =

m∑

i=1

(Ir ⊗Xi)
TWi(Ir ⊗Xi).

Taking expectations over the distribution of yi for fixed θ, one can show that E(β̃) =

β, E(vec(b̂i)) = 0, and E(vec(b̂i)(vec(b̂i))T )=Ψ − Ui. Using these facts and algebraic
manipulation, it follows that

E

(
∂2'

∂vec(β)∂(vec(β))T

)
= −Γ

and

E

(
∂2'

∂ωj∂(vec(β))T

)
= E

(
∂2'

∂σj∂(vec(β))T

)
= 0.

Moreover,

E

(
∂2'

∂ωj∂ωk

)
= −1

2

m∑

i=1

tr(Ψ− Ui)Gj(Ψ− Ui)Gk,

E

(
∂2'

∂ωj∂σk

)
= −1

2

m∑

i=1

trUi(Fk ⊗ ZT
i Zi)UiGj ,

E

(
∂2'

∂σj∂σk

)
= −1

2

m∑

i=1

tr
(
niΣFjΣFk

− (Fk ⊗ ZT
i Zi)Ui(Fk ⊗ ZT

i Zi)

− 2(FjΣFk ⊗ ZT
i Zi)Ui

)
.

Because the cross-derivatives of β with the covariance parameters have zero expec-
tation, the scoring step for θ separates into independent linear updates for β and (Ψ,Σ).
The updated estimate for β is the GLS estimate β̃ under the current estimated covariance
parameters. Collecting the free covariance parameters into vectors, ω = (ω1, ω2, . . . , ωg)

T ,
σ = (σ1, σ2, . . . , σh)

T , and η = (ωT , σT )T , the updated covariance estimates are found
by solving Cη(t+1) = d with

C = −




E

(
∂2'

∂ω∂ωT

)
E

(
∂2'

∂ω∂σT

)

E

(
∂2'

∂σ∂ωT

)
E

(
∂2'

∂σ∂σT

)






448 J. L. SCHAFER AND R. M. YUCEL

and d = Cη(t) + '′(η). Updated estimates for Ψ and Σ are obtained by inversion of∑
j ωjGj and

∑
j σjFj . In typical situations, the algorithm converges by 10–15 cycles.

Note that scoring-updated estimates for Ψ and Σ are not guaranteed to be positive definite;
if the estimates stray outside the parameter space, a step-halving procedure is used to bring
them back in.

3.3 EM ALGORITHM

We now discuss a procedure that can be used when arbitrary portions of the response
matrices Y = (y1, y2, . . . , ym) are ignorably missing. We embed our scoring procedure
within an EM algorithm which augments the observed data with missing portions of yi
but not random effects. The performance of this algorithm is best when the proportion of
partially observed rows in yi is small, and degrades if the observed data become very sparse;
however, it does not tend to slow down merely when the random effects are poorly estimated.
The E-step calculates the expectation of the complete-data log-likelihood function (3.2)
with respect to the conditional distribution of Ymis given Yobs under a current estimate of θ.
The M-step updates the estimate of θ, maximizing this expected log-likelihood by scoring.
Details are provided below.

For the E-step, note that (3.2) is a linear function of the sufficient statistics vec(yi)
and vec(yi)vec(yi)T . It follows from (1.1) that vec(yi) and vec(bi) are jointly normal with
covariance matrix [

(Ir ⊗ Zi)Ψ(Ir ⊗ Zi)
T (Ir ⊗ Zi)Ψ

Ψ(Ir ⊗ Zi)
T Ψ

]
. (3.3)

One way to find the necessary expectations is to begin with (3.3), whose dimension is
(rq + rni) × (rq + rni), and apply an orthogonalization method (e.g. sweep) for i =

1, 2, . . . ,m. This strategy may work in small examples but becomes prohibitively expensive
as ni or r grows. Instead, we capitalize on the fact that the rows of yi are conditionally
independent given bi with constant covariance.

Consider the expectation of the first complete-data sufficient statistic,

E(yi | yi(obs)) = E
(
E(yi | yi(obs), bi) | yi(obs)

)
.

This calculation requires access to the distributions of yi(mis) given (yi(obs), bi) and bi given
yi(obs). The former is simple because, given bi, the rows of y∗i = yi − Xiβ − Zibi are
independent and identically distributed as N(0,Σ). Therefore, the missing elements in
any row of y∗i have, given the observed elements and bi, an intercept-free regression on
the observed elements; the parameters of this regression can be obtained by inverting the
square submatrix of Σ corresponding to the observed elements. Letting y∗ij(mis) and y∗ij(obs)

denote the missing and observed portions of the jth row of y∗i , we have

E(y∗ij(mis) | yi(obs), bi) = Σ21Σ
−1
11 y∗ij(obs),

where Σ11 is the square submatrix of Σ corresponding to the observed elements and Σ21 is
the rectangular submatrix of covariances between the missing and observed elements.
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Finally, because y∗i is a linear function of bi, the expectation of yi without conditioning
on bi is obtained by direct substitution ofE(bi | yi(obs)) for bi. Notice that the value ofΣ21Σ11

varies by missingness pattern but not by observational units i = 1, 2, . . . ,m; computations
can be reduced by grouping rows with identical missingness patterns across units. The
parameters of the distribution of bi given yi(obs) are obtained by applying a reverse-sweep
procedure to b̂i and Ui, as defined in Section 2.2, to de-condition upon yi(mis).

For the second sufficient statistic vec(yi)vec(yi)T , one can apply a similar argument,
first calculating the conditional expectation given bi and yi(obs), then averaging over the
distribution of bi given yi(obs). Let yijk denote the kth element of the jth row of yi. The
formula for the expectation of yijkyij′k′ depends on whether yijk and yij′k′ are observed
or missing, and whether they are in the same (j = j′) or different (j �= j′) rows. It is
easy to see that the expectation of yijkyij′k′ given yi(obs) is given by: yijkyij′k′ if both are
observed; yijkE(yij′k′ |yi(obs)) if yijk is observed and yij′k′ is missing; and

E(yijk |yi(obs))E(yij′k′ |yi(obs)) + cov(yijk, yij′k′ |yi(obs))

if both are missing. The covariance between yijk and yij′k′ given yi(obs) is equal to

cov(Aijk, Aij′k′ | yi(obs)) + [Σ22·1]kk′

if they are in the same row, and

cov(Aijk, Aij′k′ | yi(obs))

if they are in different rows, where

Aijk = E(yijk | bi, yi(obs))

comes from the regression predictions for the missing elements in the jth row of yi given
the observed elements. The covariance cov(Aijk, Aij′k′ | yi(obs)) is obtained by noting that
it is a linear function of the elements of the covariance matrix for bi given yi(obs).

The M-step requires us to maximize the expected log-likelihood computed in the E-
step. This expected log-likelihood has nearly the same form as (3.2) and can be maximized
by a slight modification of the Fisher scoring procedure. Minor changes must be made to
the function ' and its first derivatives, but the expected second derivatives remain the same.
The first derivatives of 'e = E(' | Ymis) with respect to the elements of θ are

∂'e
∂vec(β)

= −
(

m∑

i=1

(Ir ⊗Xi)
TWi(Ir ⊗Xi)

)
vec(β − β̃),

∂'e
∂ωj

=
1
2

m∑

i=1

tr
(
Ψ− Ui − (Σ−1 ⊗ ZT

i Zi)

UiTiUi(Σ
−1 ⊗ ZT

i Zi)
)
Gj ,

∂'e
∂σl

=
1
2

m∑

i=1

tr
(
niΣFl − (Fl ⊗ ZT

i Zi)Ui

−Wi(ΣFjΣ⊗ Ini)WiTi

)
,
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where

vec(β̃) = Γ

m∑

i=1

(Ir ⊗Xi)
TWiE(vec(yi) | θ, yi(obs)),

Ti = E
{

vec(yi −Xiβ)vec(yi −Xiβ)
T |yi(obs), θ

}
.

After calculating these derivatives, we update the parameters in the same fashion as in
Section 3.2.

In practice, it is not necessary to iterate until the scoring procedure converges within
each M-step; one step of scoring is usually sufficient, provided that 'e has increased. The
resulting procedure becomes a generalized EM (GEM) algorithm rather than EM, in the
terminology of Dempster, Laird, and Rubin (1977), and is usually well-behaved. Slightly
faster convergence can often be achieved by a simple reparameterization, taking logarithms
of the diagonal elements of Ψ−1 and Σ−1 for scoring, which seems to help when the
maximum lies near the boundary of the parameter space. Derivatives with respect to these
parameters are found by the expressions above and a chain rule.

3.4 FURTHER POINTS

Mode-finding algorithms, especially scoring, may require good starting values. We
obtain starting values as follows: For each response variable Yj , we fit univariate linear
mixed model (1.3) using the cases for which Yj is observed. Fast and stable algorithms
described in a technical report (Schafer 1998) provide ML estimates for the portions of Σ,
Ψ and β pertaining to Yj . Off-diagonal elements of Σ and blocks of Ψ are initially set to
zero.

Although our algorithm converges more quickly than conventional EM methods for
mixed-effects models, it may be less stable when the log-likelihood is oddly shaped. To
improve stability, we combine our method with a conventional EM procedure based on the
augmented-data likelihood (3.1), substituting one step of conventional EM if a single step
of scoring fails to increase the log-likelihood.

If random effects are eliminated (Ψ = 0), the model reduces to a standard multivariate
regression yi = Xiβ + εi where the rows of ε are independently distributed as N(0,Σ).
In this situation, ML estimates of (β,Σ) may be found by a straightforward extension
of EM algorithms for incomplete multivariate normal data (Schafer 1997, chap. 5). Note
that a hypothesis test for Ψ = 0 should not be performed by standard likelihood-ratio
methods because the null model places rq parameters on on the boundary of the parameter
space, making the limiting distribution under null hypothesis rather complicated (Stram and
Lee 1995). The standard chi-square limiting distribution does apply when testing the null
hypothesis that Ψ is block-diagonal versus the unstructured alternative.

As an alternative to Fisher scoring, one might consider optimizing the expected log-
likelihood by a sequence of constrained maximizations. For example, one could maximize
with respect to β holding (Ψ,Σ) constant; then with respect to Ψ holding (β,Σ) constant;
and then with respect to Σ holding (β,Ψ) constant. This would produce an ECM algorithm,
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a useful generalization of EM described by Meng and Rubin (1993). In this example,
however, two of the three constrained maximizations would require an iterative method
such as Newton–Raphson, leading to no substantial simplification.

As with any EM algorithm, the procedure of Section 3.3 does not automatically pro-
duce correct standard errors for parameter estimates. If necessary, standard errors could be
found by the supplemented EM (SEM) method of Meng and Rubin (1991). In most cases,
however, multiple imputation as described in Section 2 will produce standard errors in a
more straightforward and less cumbersome fashion.

Finally, consider the related problem of restricted maximum likelihood (RML) esti-
mation, which maximizes the indefinite integral of the likelihood with respect to β. This
function is

L1(θ) ∝ |Γ|1/2
m∏

i=1

|Wi|1/2 exp

{
−1

2
vec(yi −Xiβ̃)

T Wivec(yi −Xiβ̃)

}
,

where Γ and β̃ are as defined in Section 3.2. Our algorithms for ML estimates may be
modified to compute RML estimates. One may approximate the expected second derivatives
of '1(θ) = logL1(θ) by the expected second derivatives of '(θ), but first derivatives are
more complicated because β̃ is a function of the unknown covariance parameters. These
changes affect both the scoring procedure for complete yi and the M-step for incomplete
yi.

4. EXAMPLE

4.1 ADOLESCENT ALCOHOL PREVENTION TRIAL

Data for this example were taken from the Adolescent Alcohol Prevention Trial (AAPT),
a longitudinal school-based intervention study of substance use in the Los Angeles, CA,
area (Hansen and Graham 1991). A sample of 3,574 school children received question-
naires yearly in grades 5–10 to measure substance-use attitudes and behaviors. We exam-
ined three important variables derived from the AAPT questionnaire: Y1 =DRINKING, a
composite measure of self-reported alcohol use;Y2 =POSCON, a measure of the perceived
positive consequences of use; and Y3 =NEGCON, a measure of the perceived negative
consequences of use. Many values of these variables were missing due to absenteeism and
attrition, which we will assume to be ignorable (Little and Rubin 1987; Rubin 1976). The ig-
norability assumption has been considered in detail by Graham, Hofer, and Piccinin (1994)
and is thought to be somewhat plausible; the primary reasons for attrition were ordinary
moving and migration of students among schools and districts. Moreover, a large portion of
truly ignorable missing data were missing by design; in some years, Y2 and Y3 were omitted
at random from one-third of the questionnaires, and in other years these measures were not
collected at all. Missingness rates for the three variables are shown in Table 1, and means
and standard deviations by year are shown in Table 2.
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Table 1. Missingness Rates (%) by Grade

Grade

5 6 7 8 9 10

DRINKING 2 24 24 33 35 44
POSCON 47 55 62 100 66 63
NEGCON 48 56 62 100 100 100

For one analysis, researchers wanted to fit linear growth curves to predict Y1 from Y2,
Y3, and other important covariates including gender. This analysis was not a straightforward
application of a linear mixed-effects model because of the high rates of missing values on the
covariates Y2 and Y3. We multiply imputed values for Y1, Y2, and Y3 under our multivariate
model, allowing the growth modeling to proceed with standard software. Our imputation
model specified linear trends over time with random slopes and intercepts for each of the
r = 3 variables, a fixed effect for gender, and a gender by time interaction. Each Xi matrix
had p = 4 columns corresponding to an intercept, grade, gender, and gender × grade; and
each Zi had q = 2 columns corresponding to intercept and grade. Notice from Table 2 that
both the average level of DRINKING and its variation increase dramatically over time. To
make the assumption of a constant residual covariance matrix Σ more plausible, reported
alcohol use was re-expressed as the logarithm of (DRINKING+5).

Because NEGCON is entirely missing for the last three years of the study, the likely
values of this variable for grades 8–10 are being inferred from two sources: extrapolation
from grades 5–7 based on the assumption of linear growth, and the residual covariances
among the three response variables which are assumed to be constant across time. Neither
of these assumptions can be effectively tested from the data at hand, so inferences pertaining
to NEGCON are heavily model-based.

4.2 MODE FINDING AND IMPUTATION

Prior to imputation, we examined alternative covariance structures using the estima-
tion procedures of Section 3.3. Despite the high rates of missingness, our EM algorithm
converged to a maximum relative parameter change of 0.0001 in only 104 iterations for
the unstructured-Ψ model and 95 for the block-diagonal version. Without random effects

Table 2. Means (standard deviations) of Observed Variables by Grade

Grade

5 6 7 8 9 10

DRINKING −1.43 −1.12 −0.57 0.09 1.29 1.97
(1.33) (1.96) (2.73) (3.47) (4.40) (4.78)

POSCON 1.30 1.34 1.48 — 1.84 1.96
(0.61) (0.62) (0.74) — (0.89) (0.91)

NEGCON 2.94 3.05 3.07 — — —
(0.76) (0.75) (0.77) — — —



MULTIVARIATE MIXED MODELS WITH MISSING VALUES 453

iteration number

ob
se

rv
ed

 lo
g-

lik
el

ih
oo

d

0 20 40 60 80 100 120 140

-2
00

00
-1

80
00

-1
60

00
-1

40
00

-1
20

00

0 20 40 60 80 100 120 140

unstructured
block-diagonal
fixed-effects only

Figure 1. Convergence behaviors under different covariance structures.

(Ψ = 0) EM again converged in approximately 100 steps. Values of the log-likelihood
for all iterations are plotted in Figure 1. The likelihood-ratio statistic for testing the block-
diagonal model against the unstructured alternative is 776.86; comparing this value to χ2

12

yields a p value of essentially zero.

In contrast to these EM algorithms, we anticipated that the Gibbs sampler of Section 2

would converge rather slowly, because that procedure augments the observed data by sim-

ulated random effects at each cycle. With only six occasions, the individual random slopes

and intercepts for Y1, Y2, and Y3 are not well estimated; moreover, the large sample size

causes the augmented-data posterior distribution forΨ to become very tight, inducing a high

degree of correlation from one cycle to the next. To assess convergence, we ran our Gibbs

sampler for an initial 2,000 cycles using an unstructured Ψ and mild prior distributions; we

set ν1 = 3, Λ−1
1 = 3Σ̂, ν2 = 6, and Λ−1

2 = 6Ψ̂, where Σ̂ and Ψ̂ were obtained from EM.

Time-series plots and sample autocorrelations for the elements of Ψ suggested that several

hundred cycles were needed for the dependence to die out. Based on this information, we

continued the Gibbs sampler for a total of 11,000 cycles, taking the simulated values of

Ymis stored at cycles 2,000, 3,000, . . . , 11,000 as multiple imputations. Re-estimating the

autocorrelations from cycles 1,001–11,000, we verified that the dependence in the elements

of θ had indeed died down by lag 200, so the ten stored imputations could reasonably be re-

garded as independent draws from P (Ymis |Yobs). Each 1,000 cycles required approximately

17 minutes on a 400 MhZ Pentium II workstation.
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Table 3. Estimated Coefficients, Standard Errors, Degrees of Freedom, and Percent Missing Informa-
tion From Multiply-Imputed Growth-Curve Analysis

est. SE df % missing

intercept −2.572 0.084 19 71
grade (1=5th, . . ., 6=10th) 0.386 0.011 35 53
sex (0=female, 1=male) 0.370 0.046 324 17
sex × grade −0.105 0.013 88 33
POSCON 0.549 0.023 17 76
NEGCON −0.090 0.023 15 80

4.3 POST-IMPUTATION ANALYSIS

After imputation, we analyzed the data by a conventional mixed-effects model for the

logarithm of (DRINKING+5). The model was a version of (1.3) with fixed effects for

gender, grade, gender×grade, POSCON and NEGCON, plus random intercepts and slopes

for grade. ML estimates were computed from each imputed data set and combined using

Rubin’s (1987) rules for multiple-imputation inference for scalar estimands. Results of this

procedure are summarized in Table 3. The point estimates are simply the averages of the

ML estimates across the ten imputations. The standard errors incorporate uncertainty due

to missing data as well as ordinary sampling variability. The degrees of freedom shown

are the estimated degrees of freedom appropriate for hypothesis tests and interval estimates

based on a Student’s t-approximation. All coefficients are highly statistically significant.

Table 3 also displays the estimated percent rate of missing information for each estimand

as derived by Rubin (1987). The high rates of missing information indicate that inferences

for all coefficients (except sex) may be highly dependent upon the form of the imputation

model and the assumption of ignorable nonresponse. The latter assumption is not particularly

troubling for these data, because the majority of missing values are missing by design.

Certain assumptions of the imputation model, however—in particular, the assumed linear

growth for NEGCON and constancy of the residual covariances across time—are not really

testable from the observed data, so results from this analysis should be interpreted with

caution.

Despite these strong caveats, the estimates in Table 3 provide some intriguing and

plausible interpretations about the behavior of this cohort. The positive coefficient for sex

indicates that boys reported higher average rates of alcohol use than girls in the initial

years of the study. The negative effect for sex×grade, however, shows that girls exhibit

higher rates of increase than boys, so that the girls’ average overtakes the boys’ by grade

8. The large positive effect of POSCON indicates that increasing perceptions about the

positive consequences of alcohol use are highly associated with increasing levels of re-

ported use. The negative coefficient for NEGCON suggests that increasing beliefs about

negative consequences do tend to reduce levels of use, but the effect is much smaller than

that of POSCON. These results are consistent with those of previous studies (MacKinnon

et al. 1991) which demonstrated that perceived positive consequences may be influential
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determinants of substance-use behavior, but beliefs about negative consequences have little

discernible effect.

5. DISCUSSION
The algorithms developed here represent an important step in helping researchers to

analyze multivariate longitudinal or clustered data with missing values. If the dataset con-
tains only a few large clusters, the MCMC procedure described in Section 2 will converge
rapidly. With many small clusters the algorithm works very reliably but convergence may
be slow. The EM methods of Section 3 were designed specifically for many small clusters
and perform best in that setting.

It is straightforward to show that the multivariate mixed-effects model (1.1) implies a
conditional univariate model of the form (1.3) for each response variable given the others,
where the others are incorporated into the columns ofXi. Thus, the imputation procedures in
Section 2 are appropriate for longitudinal analyses with partially missing covariates, when
those covariates are later going to be incorporated into an analytic model as linear fixed
effects. In many studies, however, one would like to preserve and detect certain nonlinear
associations and interactions. For example, in the first analysis of Section 4, it would have
been interesting to see whether the association between POSCON and DRINKING may
have been increasing or decreasing over time; the imputation model, however, imputed
the missing values under an assumption of a constant POSCON×DRINKING association.
Extensions of the multivariate model to allow more elaborate fixed associations such as
POSCON×DRINKING× grade, or random associations such as POSCON×DRINKING
× subject, are an important topic of ongoing research.

Another limitation of our methods is that they currently allow only two levels of nesting.
Many studies involve multivariate longitudinal data that are clustered further into larger units
(e.g., repeated multivariate measurements on students within schools). Extending the Gibbs
sampler of Section 2 to accommodate additional levels of random effects is a simple matter,
but extending the scoring and EM procedures of Section 3 is not.

Another important limitation pertains to missing covariates at the subject or cluster
level, for example, non-time-varying covariates. If these covariates have no missing values,
they can be handled under the current model by simply moving them to the matrixXi. When
missing values are present, however, they should be explicitly modeled and imputed. More
specifically, let Vi = (vi1, vi2, . . . , vik)

T denote a set of variables describing unit i that
appear in some form in the columns of Xi. If one is willing to impose a simple parametric
distribution on Vi such as multivariate normal, then Gibbs sampler given by (2.2)–(2.4) can
easily be extended in the following fashion. Given Vi, the conditional distribution of yi is
be given by (1.1), and marginally the distribution of Vi is a multivariate normal distribution.
Conditionally upon the random effects bi, the joint distribution for Vi and yi is still a
multivariate normal with (yi − Zibi) appended to the variables in Vi.

Our model assumes that the rows of yi are conditionally independent given bi with
common covariance matrix Σ. In the univariate case, this assumption is commonly relaxed
by allowing a residual covariance matrix of the form σ2Vi, where Vi has a simple (e.g.,
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autoregressive or banded) pattern with a small number of unknown parameters. Sensible
multivariate extensions of these patterned covariance structures produces models and al-
gorithms that are complicated even apart from missing data. For example, the obvious
extension of vec(εi) ∼ N(0, (Σ⊗ Ini

) ) to vec(εi) ∼ N(0, (Σ⊗Vi) ) seems too restrictive
for many longitudinal datasets, because the response variablesY1, . . . , Yr would be required
to have an identical autocorrelations. Accounting for autocorrelated residuals in a plausible
manner may prove be a daunting task in the multivariate case. In many cases, apparent
nonzero correlations among the rows of εi may arise because of a misspecified model for
the mean structure over time. The problem may sometimes be reduced or eliminated by
including additional (e.g., higher-order polynomial) terms for time in the covariate matrices
Xi or Zi.
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