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You can also refer to the following paper.
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The marijuana data in the package is reproduced here,

Table 1: Change in heart rate recorded 15 and 90 minutes after marijuana
use, measured in beats per minute above baseline

15 minutes 90 minutes
Subject Placebo Low High | Placebo Low High
1 16 20 16 20 -6 -4
2 12 24 12 -6 4 -8
3 8 8 26 -4 4 8
4 20 8 - - 20 -4
5 8 4 -8 - 22 -8
6 10 20 28 -20 -4 -4
7 4 28 24 12 8 18
8 -8 20 24 -3 8 -24
9 - 20 24 8 12 -

One can use help(ecme,package=*“pan”) to see the example code.
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Imputation of missing covariates
under a multivariate linear mixed model
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Linear mixed-effects models have been widely used in the analysis of longitudinal and clus-
tered data. Standard fitting procedures for these models allow for imbalance due to missing
responses, but little has been done for problems of missing covariates. This article presents
a method for creating multiple imputations (Rubin, 1987) of missing covariates, allowing
the imputed data to be analyzed by current complete-data methods. The imputation pro-
cedure relies on a multivariate extension of a popular linear mixed-effects model (Laird and
Ware, 1982). The multivariate model is consistent with a conditional linear mixed model
for each covariate, with fixed effects for all other covariates. The technique is illustrated
on a longitudinal study of adolescent substance use with large amounts of data missing by

design.
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1 Introduction

Let y; denote an n; X r matrix of multivariate data for sample unit ¢, ¢ = 1,...,m, where
each row of y; is a joint realization of variables Y7,...,Y,. Let us assume that y; follows a

multivariate linear mixed model of the form
yi = XiB+ Z;b; + €4, (1)

where X; (n; X p) and Z; (n; x q) are known covariate matrices, § (p x r) is a matrix of
regression coefficients common to all units (the “fixed effects”), and b; (¢ x r) is a matrix
of coefficients specific to unit i (the “random effects”). We will assume that the n; rows of
g; are independently distributed as N(0,Y), and that the random effects are distributed as
bY ~ N(0, W) independently for i = 1,...,m. The superscript “V” indicates vectorization
of a matrix by stacking its columns. No further structure will be imposed on the covariance
matrices or fixed effects; we will assume only that g € RP", ¥ > 0, and ¥ > 0. Without

conditioning on by, ..., b,,, the model becomes
v~ N((XB), (L@ Z)V(L ® Z)" + (3@ 1n,)). (2)
The univariate (r = 1) version,
yi ~ N(XiB, Z9Z! +0°1,,), (3)

and more general univariate models have been extensively treated by Laird and Ware
(1982); Jennrich and Schluchter (1986); Laird, Lange, and Stram (1987); Lindstrom and
Bates (1988); and others. Estimation procedures both ordinary and restricted maximum-
likelihood—for the univariate versions are available in major statistical packages. The
present article discusses inference for the multivariate version when arbitrary portions of
the y; may be ignorably missing or missing at random, in the sense described by Rubin

(1976) and Little and Rubin (1987).



Natural applications for model (2) include (a) analyses of multivariate longitudinal data
in which a set of r variables is measured for subject i at n; occasions; and (b) analyses of
clustered multivariate cross-sectional data in which subjects are nested within groups © =
1,...,mof varying sizes n;. In (a), the measurements times will typically be incorporated in
some fashion into X; and Z;; because these matrices are not assumed to have any particular
form, the model allows time-varying covariates and measurement times that vary by subject.
In (b), X; and Z; may contain descriptors of both the subjects and the groups to which they
belong, allowing simultaneous estimation of effects due to characteristics at the subject and

group levels.

In many analyses, it is natural to regard one of the variables (say Y,) as a response

and the remaining variables (Y7,...,Y, 1) as potential predictors; interest is focused on

3

the conditional distribution of Y, given Yj,..., Y, 1, and the parameters governing the
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joint distribution of Y7, ...,Y,_; are of little interest. Given that, multivariate models for

Y1, ..., Y, are still worth considering in many situations. One such situation is longitudinal
modeling with missing covariates. Notice that the multivariate model (2) for Yi,... Y,
implies a conditional univariate model of the form (3) for Y,, where the covariate matrix
X; has been augmented to include columns for Y7, ..., Y,_;. When missing values occur on

Yi,...,Y,_1, a full parametric model for Yi,...,Y, provides a vehicle for inference in the

conditional univariate submodel.

More generally, a full multivariate model for Y;, ... Y, can be quite useful when imput-
ing for nonresponse in multivariate panel data. Imputation, especially multiple imputation
(Rubin, 1987), has many important advantages over other methods for handling nonre-
sponse. If values for the missing responses can be imputed in a statistically sound manner,
the imputed dataset may be used for a variety of subsequent analyses. Many multivariate
incomplete-data problems that were formerly troublesome can now be handled quite rou-

tinely through model-based multiple imputation (Schafer, 1996). In a multivariate panel



study, an imputation model should simultaneously preserve the relationships among vari-
ables measured for a subject at a single point in time, and among measurements of the
same variable for a subject at different points in time. Multivariate mixed-effects models
such as (2) are a natural choice, because they can effectively pool information within and
across panels without a massive proliferation of parameters. The assumptions of a stable
residual covariance matrix 3 and errors that are conditionally (given b;) independent across
time seems especially helpful; more general structures may be computationally troublesome
or difficult to estimate (see Section 5). When this model is used for imputation, only the
variables to be imputed need be included among Y7, ..., Y,; additional covariates that are

completely observed may be incorporated into X; or Z; without distributional assumptions.

A motivating example, to be discussed in Section 4, comes from a study of adolescent
substance use. For a period of six years, school children received questionnaires designed
to measure attitudes and behaviors regarding the use of controlled substances. Researchers
wanted to examine interrelationships among three time-varying covariates: a composite
measure of self-reported alcohol use (Y7), and measures of the perceived positive (Y3) and
negative (Y3) consequences of alcohol use. Large amounts of data were missing by design,
because Y5 and Y3 were measured for at most a subsample of students in each year. Using
the techniques described below, values for the missing items were multiply imputed, allow-
ing us to subsequently fit a conventional linear growth-curve model for alcohol use given

the perceived consequences of use.

A recent paper by Liu, Taylor and Belin (1995) discussed the use of a multivariate
model similar to (1) for imputation of missing covariates in longitudinal studies. Their
model was less general, however, because it imposed special structure upon X;, Z;, and X.
In particular, they assumed a diagonal form for > which is often unrealistic and undesirable.
Correlations among the columns of ¢; can be a crucial aspect of an imputation procedure,

because individual-level deviations from a norm in one variable may be highly predictive of



deviations on another variable. Imputing under a multivariate model that does not allow
residual correlations among Y7,...,Y, may be essentially no different from imputing each
variable Y; separately under a univariate model. In the adolescent substance-use example
of Section 4, the nonzero correlations among the three time-varying covariates are crucial

for predicting a child’s missing value for Y; when Y, and/or Y3 are observed, and vice-versa.

Without missing data, techniques for fitting the multivariate model (1) would be rela-
tively straightforward extensions of existing methods for the univariate case. When miss-
ing values occur within yq,...,y,, in arbitrary patterns, however, direct likelihood-based
inferences about the unknown parameters 6 = (3,3, ¥) may be difficult to obtain. Sec-
tion 2 discusses general computational strategies for fitting the multivariate linear mixed
model. Section 3 presents a Gibbs sampler that may be used to create model-based multi-
ple imputations of the missing data for subsequent analyses. The technique is applied to
substance-use data in Section 4, and Section 5 presents further discussion on the use of this

model and many possible extensions.

2 Strategies for model fitting

Let Y = (y1,...,ym) denote the complete data without missing values. If Y were seen,
inferences about the parameters § = (3,3, ¥) could be based on a likelihood function pro-
portional to the product (i = 1,...,m) of the normal density functions implied by (2).
The fixed effects G can be removed from this likelihood function in one of two ways: pro-
filing, in which 3 is replaced by its conditional maximum given (3, ¥); and marginalizing,
in which the likelihood is replaced by its indefinite integral with respect to 3. Both the
profile and marginal likelihoods can be written in closed form as functions of the general-
ized least-squares estimate for § given (X, ). Maximizing the former produces ordinary
maximum-likelihood (ML) estimates, whereas maximizing the latter leads to restricted

maximum-likelihood (RML) estimates.



For the univariate (r = 1) version of this model, Lindstrom and Bates (1988) present
Newton-Raphson algorithms for ML and RML estimation. Newton-Raphson has excellent
local convergence behavior but requires careful implementation. The calculations required
to obtain derivatives of the loglikelihood at each iteration are complex and can be quite
expensive. The algorithms of Lindstrom and Bates (1988) are finely tuned for the univariate
model, but they do not generalize easily to the multivariate case unless we assume that ¥
has a special patterned structure, ¥ = ¥ ® T for some ¢ X ¢ matrix Y. This structure,
which forces the correlation matrices for the r columns of b; to be identical, seems quite
unrealistic in many situations. Consider, for example, a linear growth model in which the
slopes and intercepts for each variable Y7, ..., Y, vary by subject. The correlation between
the slope and intercept of any variable Y expresses the degree to which individuals with
high initial values of Y; tend to also have high rates of growth for Yj}; there may be no

a priori reason to believe that these tendencies should be identical, especially when the

variables Y7, ..., Y, are very different in nature.

Simpler methods for ML, and RML estimation are based on variants of the EM algo-
rithm. EM relies on the fact that if the random effects B = (b),...,bY)7 were seen, the

likelihood function would factor into distinct likelihoods for ¥ and (3, %),
L@ |Y,B) = L(V | B)L(3,X | Y, B), (4)

each of which can be maximized quickly without iteration. EM algorithms tend to be quite
stable but may converge very slowly; in many problems, hundreds or even thousands of
iterations are required. EM-type algorithms for M. and RML estimation in the univariate
case were given by Laird and Ware (1982) and Laird, Lange, and Stram (1987). As pointed
out by Jennrich and Schluchter (1986) and Liu and Rubin (1995), many variants of EM are

possible in the univariate case; not all of these generalize easily to the multivariate case.

The key feature of EM is that at each iteration, the sufficient statistics in (4) pertaining

to B must be replaced by their conditional expectations given Y and the current estimate



of #. In the multivariate model, the pairs (y;, b;) are distributed according to

yiv | blve ~ N( (Xlﬁ + Zibi)V= (2 & [m) )7 (5)

b, |0 ~ N(0,7), (6)

independently for i = 1,...,m. It follows from Bayes’s Theorem that b," | y;,0 ~

N(b;V,T;), where

b, = L;(E2'eZ])(yi—X:8)", (7)

T, (v '+ tezl 7)) (8)

Calculating I'; by (8) requires inversion of rq X rq matrices and is the preferred method
in most cases where ¢ < n;. The sufficient statistics for B required by EM are linear in
the elements of B and BTB, whose expectations are B = (b,Y,...,b,Y)" and 7 (I'; +
b,V (b,V)T), respectively.

Now consider what happens when portions of ¥ = (yi,...,¥,) are ignorably missing.
Let Yi(obs) and yYimis) denote the observed and missing parts of y;, respectively, and let
Yobs = {Yi(obs)} and Yiis = {Yi(mis) }- The simplest EM-type algorithms for ML and RML
estimation still rely on the factorization (4). At each iteration, however, one must now find
the conditional expectation given Y, of sufficient statistics that are linear and quadratic
functions of b; and Yi(mis). From (5)-(6) we see that ;" and b are jointly normal with
covariance matrix

[ (L ®Z)¥(I, @ Z)T+(EeL,) (I,®Z)¥ | 9
[ (I, ® Z)" v o]
To find the expectations necessary for EM, one would have to repeatedly apply a sweep
operator or similar orthogonalization method to these matrices of dimension (rq + rn;) x
(rq+mrn;) for i =1,...,m. Without imposing further structure (e.g. equality of the Z;) on
the model, the computations for even the simplest variants of EM can thus be exceedingly

expensive.



3 Inference by multiple imputation

In typical applications, many of the parameters in this multivariate model are a nuisance,
and obtaining quality estimates of every component of  is not of high priority. Rather than

attempting direct likelihood-based inferences about 6, let us consider inference by multiple

imputation. In multiple imputation, one must generate k independent draws Y,%g, LY
from a posterior predictive distribution of the missing data,
P(szs ‘ Yobs) = /P(szs | Yob379) P(e | Yobs) d@, (10)

where P(6 | Y,45) is proportional to the product of the observed-data likelihood function
P(e | Yobs) - /L<0 | Y) dezs

and a prior density function 7(6). After imputation, the resulting k versions of the complete
data are separately analyzed using complete-data methods, and the results are combined
to obtain inferences that effectively incorporate uncertainty due to missing data. As shown
by Rubin (1987), quality inferences can often be obtained with a very small number (e.g.
k = 5) of imputations. Methods for combining the results of the complete-data analyses

are reviewed by Schafer (1996).

Except in trivial situations, the posterior predictive distribution (10) cannot be simu-
lated directly. It is possible, however, to create random draws of Yi,;; from P (Y5 | Yous)
using techniques of Markov chain Monte Carlo (MCMC). In MCMC, one generates a se-
quence of dependent random variates whose distribution converges to the desired target.
Overviews of MCMC methods are given by Gelfand and Smith (1990); Smith and Roberts
(1993); Tanner (1993); and in the chapters of Gilks, Richardson, and Spiegelhalter (1996).
Applications of MCMC to univariate linear mixed models have been made by a number of
authors, including Gelfand et al. (1990); Zeger and Karim (1991); Liu and Rubin (1995);
and Carlin (1996). Like EM, these MCMC methods rely simplifications to the likelihood



that result when the random effects are assumed known. Unlike EM, however, MCMC al-
lows us to circumvent manipulations on the large matrices (9) by alternately conditioning

on simulated values of the random effects and the missing data.

In a slight abuse of notation, let A* ~ P(A) denote simulation of a random variate A*
from a distribution or density function P(A). Consider an iterative simulation algorithm in
which the current version of the unknown parameter §) = (5, ¥ W) and the missing

data YV are updated in three steps:

mais

BTY o P(by | Yo, Y 00), i=1,. . m; (11)
0D~ PO | Yops, Vi, BE); (12)
UZ((?‘;ZQ) ~  P(Yimis) | Yobs, B(Hl)’ g(t+1)) i=1,...,m. (13)

Given starting values #(*) and Y,fﬂl, these three steps define a Gibbs sampler in which the

sequences {#®M} and {Yn(fi)s} converge in distribution to P(6 | Yo5s) and P(Yus | Yous),
respectively.

This is not the only Gibbs sampler that could be implemented for this problem; as
noted by Liu and Rubin (1995) in the univariate case, a wide variety of alternative MCMC
algorithms are possible. If any of the steps (11) (13) could be carried out without con-
ditioning on simulated values of Y,,;; or B then the algorithm could be made to converge
more quickly. De-conditioning may greatly increase the computational cost per iteration,
however, and some limited experience suggests that the additional effort required to do so
is usually not worthwhile. The three-step algorithm (11) (13) is actually among the slowest
to converge in terms of number of iterations required, but iterations can be executed on a
computer quickly provided that sufficient physical memory is available to store Y, Y;l?s,
and the covariate matrices X; and Z;. If the algorithm is believed to have converged to
stationarity by 7' cycles, then k& imputations of Y,,;; can be generated in k7" cycles. Conver-

gence can be informally assessed by examining the time-series plots, autocorrelations, etc.

for functions of #®). Formal and informal convergence diagnostics for MCMC are discussed



by Schafer (1996) and in the chapters of Gilks, Richardson, and Spiegelhalter (1996).

Implementation of (11)—(13) requires us to specify a prior distribution for 6. It is known
that in mixed-effects models, improper prior distributions for the covariance components
may lead to Gibbs samplers that do not converge to proper posteriors, even though each
step of the cycle is well-defined. For this reason, proper prior distributions for the covariance
matrices are highly recommended. For simplicity, let us apply independent inverse-Wishart
distributions X! ~ W (r, A1) and ¥ ~ W (s, Ay), where W (v, A) denotes a Wishart
with v > 0 degrees of freedom and mean vA > 0. These priors are proper provided
that vy > r and v, > ¢r. In choosing values for the hyperparameters, it is helpful to
regard v; "A; ! and v, 'A, ! as prior guesses for ¥ and U with confidence based on v; and
vy degrees of freedom, respectively. Small values for v; and v, make the prior densities

relatively diffuse, reducing their impact on the final inferences. For 3, we use an improper

uniform density over RP".

Under these priors, deriving each of the distributions in (11) (13) becomes a straight-
forward application of classical Bayesian methods. The random effects b; in (11) are drawn
from multivariate normal distributions with means and covariances calculated as in (7)—(8).
Simulation of # in (12) proceeds as follows: First, draw U~! from a Wishart distribution
with parameters v = v +m and A, = (A;' + BTB)~!, respectively. Next, calculate the
ordinary least-squares coefficients

m -1 m

B = <Z XZTXz) (Z X (yi — ZJ%‘))

i=1 i=1
and residuals € = y; — XiB — Z;b;, and draw £ ! from a Wishart distribution with degrees
of freedom v| = vy —p+>_12 | n; and scale matrix A} = (Al_] +>, é;fpéiyl. Finally, draw
G from a multivariate normal distribution centered at ﬁA with covariance matrix X ® V,
where V' = ( A XiTXi)il. For simulating [, it is helpful to note that if G and H are
upper-triangular square roots of ¥ and V, respectively (G'G = ¥ and H'H = V), then

3

(G ® H is an upper-triangular square root of ¥ @ V.
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To carry out the final step (13) of the Gibbs sampler, notice that the rows of ; = y; —
X,;3—Z;b; are independent and normally distributed with mean zero and covariance matrix
Y. Therefore, in any row of £;, the missing elements have an intercept-free multivariate
normal regression on the observed elements; the slopes and residual covariances for this
regression can be quickly calculated by inverting the square submatrix of ¥ corresponding
to the observed variables. Drawing the missing elements in &; from these regressions and

adding them to the corresponding elements of X;3+ Z;b; completes the simulation of y;(nis).

The convergence behavior of this algorithm is governed by two factors: the amount of
information about 6 carried in Y,,;; relative to Y,,,; and the degree to which the random
effects b; can be estimated from the y;. If the missing portions of Y exert high leverage over
components of 8, or if the b; are poorly estimated (i.e. if the within-unit precision matrices
Y='® ZI'Z; tend to be small relative to 1~'), then convergence can be slow. Notice that
any row of y; that is completely missing may be omitted from consideration, along with the
corresponding rows of X; and 7;, without changing the form of the complete-data model
(1). Ignoring these rows will eliminate unnecessary computation at each cycle and reduce
the rate of missing information, speeding the overall convergence. These rows of data may

be restored at the final imputation step (13) to produce a fully completed dataset.

This Gibbs sampler has been implemented by the author in Fortran-77 as a function
within the statistical languages S and Splus (Becker, Chambers, and Wilks, 1988). A
sequence of T > 1 Gibbs cycles is performed with a single Fortran call; the function

returns the final imputed dataset (Yobs,Y,g;)) and the history 80, ... 6 of parameter
iterates. Starting values for # and Y,,;s may be supplied, or the function may be allowed to
choose its own starting value. Source code and documentation for this function will soon be
available at the S archive in Statlib, the statistical software distribution service located at
Carnegie Mellon University (http://1lib.stat.cmu.edu/S/). The package will be called

ipan, for imputation of multivariate panel data.
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Table 1: Missingness rates (%) by grade

Grade
6 7 8 9 10

DRINKING 2 24 24 33 35 44
POSCON 47 55 62 100 66 63
NEGCON 48 56 62 100 100 100

4 Application: Adolescent Alcohol Prevention Trial

Data for this example were drawn from the Adolescent Alcohol Prevention Trial, a longi-
tudinal school-based intervention study of substance use in the Los Angeles area (Hansen
and Graham, 1991). Attitudes and behaviors pertaining to the use of alcohol, tobacco,
and marijuana were measured by self-report questionnaires administered yearly in grades
5 10. The data exhibit typical rates of uncontrolled nonresponse due to absenteeism, at-
trition, etc. which we will assume to be ignorable; this assumption has been given careful
consideration and is not entirely implausible (Graham, Hofer, and Piccinin, 1994). In ad-
dition, large amounts of truly ignorably missing data arose by design, because each student
received only a subset of the attitudinal items in any year; in some years, certain atti-
tudinal questions were omitted entirely. For the present analysis, we examined a cohort
of m = 3,574 children and focused attention on three variables: DRINKING, a composite
measure of self-reported alcohol use; POSCON, the perceived positive consequences of alcohol
use; and NEGCON, the perceived negative consequences of use. DRINKING appeared on the
questionnaire every year, whereas POSCON was omitted in grade 8 and NEGCON was omitted
in grades 8-10. Missingness rates for the three variables by grade are shown in Table 1;

observed means and standard deviations appear in Table 2.

An analysis was performed to assess the possible influences of POSCON and NEGCON on
DRINKING. In this analysis, missing responses were imputed under a multivariate linear
growth model with random slopes and intercepts for each of the r = 3 variables, plus fixed

effects for gender on both the slope and intercept. Each X; matrix had p = 4 columns
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Table 2: Means (standard deviations) of observed variables
by grade

Grade
5 6 7 8 9 10

DRINKING —1.43 —1.12 —057  0.09 129  1.97
(1.33)  (1.96) (2.73) (3.47) (4.40) (4.78)

POSCON 130 134 148  —  1.84  1.96
(0.61)  (0.62) (0.74) (0.89) (0.91)
NEGCON 294 305 307 — — —

(0.76)  (0.75)  (0.77)

corresponding to an intercept, grade, gender, and gender x grade; and each Z; had ¢ = 2
columns corresponding to intercept and grade. Notice from Table 2 that both the average
level of DRINKING and its variation increase dramatically over time. To make the assumption
of a constant residual covariance matrix ¥ more plausible, alcohol use was re-expressed as
the logarithm of (DRINKING+5). Because NEGCON is entirely missing for the last three years
of the study, the likely values of this variable for grades 8-10 are being inferred from two
sources: extrapolation from grades 5-7 based on the assumption of linear growth, and the
residual covariances among the three response variables which are assumed to be constant
across time. Neither of these assumptions can be effectively tested from the data at hand,

so inferences pertaining to NEGCON are heavily model-based.

Due to the high rates of missing information, it was anticipated that the Gibbs sampler
would converge slowly. To assess convergence, the algorithm was run for an initial 2,000
cycles under a very mild prior with v; = 3, A7 = 31, s, = 6, A;' = 61. Time-series plots
and sample autocorrelations for the components of § were then examined. As anticipated,
the elements of ¥ pertaining to the slopes and intercepts of NEGCON were among the slowest
to converge because of the extreme sensitivity of these parameters to missing data. Based on
this exploratory run, it appeared that several hundred cycles might be sufficient to achieve

approximate stationarity. The Gibbs sampler was then run for an additional 9,000 cycles,

13



with the simulated value of Y,,;s stored at cycles 2,000, 3,000, ..., 11,000. Autocorrelations
estimated from cycles 1,001-11,000 verified that the dependence in all components of # had
indeed died down by lag 200, so the ten stored imputations could be reasonably regarded
as independent draws from P(Y,s | Yous). Each 1,000 cycles required approximately 17

minutes on a Sun UltraSPARC-1 workstation, approximately one cycle per second.

After imputation, the data were analyzed by a conventional linear growth-curve model
for the logarithm of (DRINKING + 5). The model was a version of (3) with fixed effects for
gender, grade, gender x grade, POSCON and NEGCON, plus random intercepts and slopes for
grade. ML estimates were computed for each imputed dataset using an ECME algorithm,
an extension of EM described by Liu and Rubin (1994). In this version of ECME, the
parameters were partitioned as 6 = (6;,6,) where 6; = (3,0%) and 6, = ¥/o? (here o
denotes the univariate version of ¥). Each cycle of ECME consisted of (a) an E-step, in
which the conditional expectations of B = (b;,...,b,)" and BT B given Y were calculated
under the current value of #; (b) a constrained maximization of the expected loglikelihood
for 6, given the previous estimate of 6;, in which B = (b, ..., b,,)" and BT B are replaced

by their expectations; and (c¢) a constrained maximization of the actual loglikelihood for 6,

given the updated estimate of #,. The updating formulas are

_ -1
V;(t) _ (gét) "’ZiTZi) :

0 = vz (g - Xx,89)

3

wl = 1, —ZvWzT

wny 1 OOLENEN0
B = o (W 0),

mo* i3

m -1 /m
B — <ZXiTWi(t)Xi> (ZXZWi(t)yi>,

=1 i=1
m

t+1 _
G2t ) _ N 12@1, _ Xiﬂ(tJr]))TWi(t)(yi . Xiﬁ(t+1))7
i=1

where N = "™, n,;. This simple algorithm, which does not seem to have appeared before

in the literature, ran slightly faster than any of the three ECME algorithms described by

14



Table 3: Estimated coefficients, standard errors, degrees
of freedom and percent missing information from multiply-
imputed growth-curve analysis

est. SE  df % missing
intercept —2.572 0.084 19 71
grade (1=b5th, ..., 6=10th) 0.386 0.011 35 53
sex (0=female, 1=male) 0.370 0.046 324 17
sex X grade —-0.105 0.013 88 33
POSCON 0.549 0.023 17 76
NEGCON —0.090 0.023 15 80

Liu and Rubin (1995) on this dataset and several others. Another virtue of this algorithm
is that the value of the actual loglikelihood function at each iteration is available essentially

no cost. Except for additive constants, the loglikelihood can be shown to be

N 1 &
109 | V) = — 5 logo™ — Zlog |67] +5 3 log [V, (14)
i=1

and the determinants in (14) can be obtained as byproducts of the inversions required for

v,

)

Using this algorithm, ML estimates were quickly obtained from the ten imputed datasets;
convergence of the parameters to four significant figures required an average of just 36
iterations. Standard errors for the fixed effects were obtained from the final value of
o?(Xm, XITW;X;)"L. The ten sets of fixed-effects estimates and their standard errors were
then combined using Rubin’s (1987) rules for multiple-imputation inference for scalar es-
timands; these and other rules for combining multiply-imputed analyses are reviewed by
Schafer (1996). Results of this procedure are summarized in Table 3. The point estimates
are simply the averages of the ML estimates across the ten imputations. The standard
errors incorporate uncertainty due to missing data as well as ordinary sampling variability.
The degrees of freedom shown are the estimated degrees of freedom appropriate for hy-
pothesis tests and interval estimates based on a Student’s t-approximation. All coefficients

are highly statistically significant.
Table 3 also shows the estimated percentage of missing information for each estimand as
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derived by Rubin (1987). The high rates of missing information indicate that the inferences
for all coefficients (except sex) may be highly dependent upon the form of the imputation
model and the assumption of ignorable nonresponse. The latter assumption is not particu-
larly troubling for these data, because the majority of missing values are missing by design.
Certain assumptions of the imputation model, however—in particular, the assumed linear
growth for NEGCON and constancy of the residual covariances across time—are not really
testable from the observed data, so results from this analysis should be interpreted with

caution.

Despite these caveats, the estimates in Table 3 provide some intriguing and plausible
interpretations about the behavior of this cohort. The positive coefficient for sex indicates
that boys reported higher average rates of alcohol use than girls in the initial years of the
study. The negative effect for sex x grade, however, shows that girls exhibit higher rates of
increase than boys, so that the girls’ average overtakes the boys’ by grade 8. The large pos-
itive effect of POSCON indicates that increasing perceptions about the positive consequences
of alcohol use are highly associated with increasing levels of reported use. The negative
coefficient for NEGCON suggests that increasing beliefs about negative consequences do tend
to reduce levels of use, but the effect is much smaller than that of POSCON. These results are
consistent with those of previous studies (MacKinnon et al., 1991) which demonstrated that
perceived positive consequences may be influential determinants of substance-use behavior,

but beliefs about negative consequences have little or no discernible effect.

5 Discussion and extensions

The multivariate mixed model (1) is a natural extension of the simple univariate model (3)
which has been quite popular in the analysis of longitudinal data. The imputation proce-
dures described in Section 3 are appropriate for longitudinal analyses with partially missing

covariates, when those covariates are going to be incorporated into an analytic model as
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fixed effects. These methods are also appropriate for multivariate cross-sectional studies
where units are nested within naturally occurring groups (e.g. children within schools). The
algorithm and software described in this article provide a principled solution to missing-data

problems for this somewhat limited but important class of analyses.

The imputation model and Gibbs sampler can be extended in a number of important
ways. 'The use of an unstructured covariance matrix W for the random effects may be
limiting in situations where some aspects of ¥ may be poorly estimated—for example, in
multivariate cluster samples with many variables, many units per cluster, but relatively few
clusters. A more parsimonious block-diagonal structure, which assumes that the random
effects pertaining to the r response variables are independent, can be handled easily. Under
a block-diagonal structure, the likelihood function in (4) pertaining to W factors into r
distinct likelihoods for the diagonal blocks, so a Gibbs sampler can draw these blocks
independently. Another extension which can be easily implemented pertains to linear
models with additional random effects due to higher levels of clustering; this would arise,
for example, in multivariate studies where individuals are grouped into larger units and
multiple observations on individuals are taken over time. Both of these features will be

incorporated into future versions of the software.

We are currently investigating a number of additional extensions the model. The first
extension pertains to columns of y; that are necessarily constant across the rows 1,...,n;.
In longitudinal studies, these columns would represent covariates that do not vary over time;
in clustered applications, they would represent characteristics of the clusters rather than
the units nested with them. If these covariates have no missing values, they can be handled
under the current model by simply moving them to the matrix X;. When missing values
are present, however, they must be explicitly modeled for purposes of imputation. If we
are willing to impose a simple parametric distribution on these covariates (e.g. multivariate

normal), then it will be straightforward to extend the Gibbs sampling procedure to impute
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these as well.

Another useful extension involves interactions among the columns of y;. The multi-
variate normal model allows only simple linear associations among the variables Y7, ...,Y,,
but in many studies one would like to preserve and detect certain nonlinear associations
and interactions. In the data example of Section 4, for example, it may have been useful
to see whether the strong effect of POSCON on DRINKING may have been increasing or de-
creasing over time; the imputation model, however, imputed the missing values under an
assumption of a constant POSCON x DRINKING association. Extensions of the multivariate
model to allow more elaborate fixed associations such as POSCON x DRINKING x grade, or
random associations such as POSCON x DRINKING x subject, are an important topic for

future research.

Finally, it will be important to extend the imputation procedures to include time-
varying responses that are categorical. Under the current procedure, ordinal responses can
be handled in an ad hoc fashion, imputing under a normal model and rounding off the results
to the nearest category. Some evidence suggests that ad hoc rounding procedures often
work well in practice (Schafer, 1996). In other situations, however, a normal model will be
clearly unacceptable for example, with nominal (unordered) responses or binary variables
that are heavily skewed. Imputation methods for multivariate datasets with continuous
and /or categorical variables (Schafer, 1996) should be extended to include random effects

that arise from longitudinal or clustered structure.

In the current model the rows of each response matrix y; are assumed to be condition-
ally independent given b; with common covariance matrix . This assumption has been
relaxed by Jennrich and Schluchter (1986), Lindstrom and Bates (1988), and others in
the univariate case to allow a residual covariance matrix of the form o2V;, where V; has
a simple (e.g. autoregressive or banded) pattern dependent upon one or more unknown

parameters. Sensible multivariate extensions of these patterned covariance structures to a
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tends to produce models and algorithms that are complex even apart from missing data.
For example, the obvious extension of ¢/ ~ N(0, (X ® I,,.) ) to €/ ~ N(0,(X ® V) ) seems
too restrictive for many longitudinal datasets, because the response variables Y;, ... Y, are
then required to have identical autocorrelations. Accounting for autocorrelated residuals
in a sensible manner may prove be a daunting task in the multivariate case. In practice,
nonzero correlations among the rows of ¢; may arise because of a misspecified model for

the mean structure over time. The problem may sometimes be reduced or eliminated by

including additional (e.g. higher-order polynomial) terms for time in the covariate matrices

Xi or Z7
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CHAPTER

Multiple Imputation With PAN

Joseph L. Schafer

issing values are a nuisance in many research efforts but especially so in

the collection and analysis of longitudinal data. Multiple occasions bring

greater opportunities for missed measurements. Fortunately, missing data
is one area where statisticians have made substantial progress in recent years.
In this chapter, I present a strategy for analyzing incomplete longitudinal data
by multiple imputation (Rubin, 1987, Schafer, 1997a).

Missing data pose a difficulty because the overwhelming majority of para-
digms and software for statistical analysis assume that the input data are com-
plete. For this reason, the quickest and most convenient methed for handling
incomplete observations is case deletion, that is, ignoring participants with
missing information. Case deletion suffers from a number of serious drawbacks,
which have been well documented (e.g., Little & Rubin, 1987). For multivariate
analyses involving a large numner of items case deletion can be very inefficient,
discarding an unacceptably high proportion of participants; even if the per-item
rates of missingness are low, few participants may have complete data for all
items. Moreover, case deletion leads to valid inferences in general only when
missing data are missing completely at random (MCAR), in the sense that the
discarded cases are like a random subsample of all cases. If the discarded cases
differ systematically from the rest, then the resuliing estimates may have po-
tentially serious bias.

A natural alternative to case deletion is imputation, the practice of replacing
missing data with plausible values. Various forms of imputation have been ap-
plied in federal surveys and censuses for decades (Madow, Nisselson, & COlkin,
1983). Imputation has been the survey statisticians method of cheice for han-
dling item nonresponse, situations in which a participant provides some infot-
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mation but fails to respond to one or more individual items on a questionnaire.
Imputation is attractive because it apparently solves the missing-data problem
at the outset; once the missing values have been imputed, the data set can be
summarized and analyzed by familiar complete-data methods. Another attrac-
tive feature of imputation is its efficiency: Unlike case deletion, imputation
allows one to make full use of the data at hand.

Methods of imputation range from simple procedures, such as mean sub-
stitution—replacing each missing value with the observed mean for that vari-
able—to elaborate hot-deck algorithms that jointly replace missing items with
data obtained from donor cases chosen to match the original on selected items
(e.g., Bailey, Chapman, & Kasprzyk, 1985). In longitudinal data sets with sub-
stantial participant-to-participant variation, analysts have sometimes filled in
missed measurements by linear interpolation, extrapolation, or “last value car-
ried forward.” Unless great care is taken, these ad hoc imputation procedures
may seriously distort important aspects of the distribution of a variable or its
relationships with other variables. In general, it is desirable for the distribution
of imputed values to resemble the distribution of the observed values, partic-
ularly with respect to intervariable relationships.

Even if an imputation method successfully preserves important aspects of
the data distributions, a potentially serious problem remains: Imputation adds
fictitious information to a data set. If imputed values are treated the same way
as observed values in subsequent analyses, then the resulting inferences will be
artificially precise, because the imputed values are imperfect proxies for the
data they represent. With single imputation, there is no simple way to reflect
uncertainty in the imputed values. In response, Rubin (1987, 1996) proposed
the method of multiple imputation, by which each missing value is represented
by a set of m > 1 simulated values. Let Y = (Y, Y,.;) denote a generic data set,
in which Y,,, is the observed part and Y, is the missing part. Multiple impu-
tation replaces Y,,, with a set of simulated draws Y&, Y2 ..., Y{ from a
predictive probability distribution P(Y,is| Yops) arising from a model. After mul-
tiple imputation, one has m simulated complete data sets, Y = (Y, Y¥), j =
1, 2, ..
results are then combined, using simple arithmetic rules, to produce overall
estimates and standard errors that account for missing-data uncertainty. I re-

., m, which are analyzed with standard complete-data methods. The

viewed these rules (Schafer, 1997a) and demonstrate them in the example near
the end of this chapter.

The key idea of multiple imputation is that it treats missing data as an
explicit source of random variability over which to be averaged. The process of
creating imputations, analyzing the imputed data sets, and combining the re-
sults is a Monte Carlo version of averaging the statistical results over the pre-
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tations are not required; sufficiently accurate results can often be obtained with
m = 10.

Carrying out multiple impuration requires two sets of assumptions, First, one
must propose a model for the distribution of Y. This data model should be
plausible and should bear some relation to the type of analysis to be performed.
For example, one could assume that the variables in the data set are jointly
normally distributed. In the case of longitudinal analyses the model should be
capable of preserving the correlation structure and time trends within individ-
uals. The second set of assumptions pertains to the manner in which the miss-
ing values became missing. It is most common to assume that the missing data
are missing at random (MAR) in the technical sense defined by Rubin {1976),
which means that the probabilities of missingness may depend on the observed
values Y., but not on the missing data Y,,,. The MAR assumnption is primarily
a mathematical convenience that allows one to perform imputation without
explicitly modeling the missing-data mechanism. In practice, MAR is essentially
untestable; it cannot be verified or contradicted by examination of the cbserved
data. If the assumption seems prima facie implausible, then alternative proce-
dures can be developed by modeling the probabilities of missingness. General
techniques and software for creating multiple imputations under non-MAR
models have not yet been developed; this is an important area for future re-
search. Further discussion on the plausibility and ramifications of MAR was
given by Little and Rubin (1987}, Graham, Hofer, and Piccinin (1994); and
Schafer (1997a).

Muliiple imputation is not the only principled method for handling missing
data. For parametric models, a main competitor is the technique of direct max-
imum likelihood, sometimes called raw or full-information maximum likelihood,
which maximizes a likelihood function on the basis of the observed data Y,
alone. This likelihood function may be written as

L{®|Y, = j L(O| Y, Yuus) AV, (12.1)

where @ represents the unknown parameters of the data model, and L(8|Y,,,
Y,..) denotes the likelihood function that one would use if no data were missing.
The integration in Equation 12.1 eliminates the dependence on Y,,,, broadening
the likelihcod function to reflect the additional uncertainty due to the fact that
Y. is unknown. In effect, this integration is nearly the same as the averaging
over P(Y,.,| Y.} that takes place in multiple imputation. Except in very simple
problems, the likelihood function Equation 12.1 tends to be comnplicated, often
requiring complicated numerical techniques or approximations. When carried
out properly, direct maximum likelihood can be statistically more efficient than
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involved, so no extra variability is introduced into summary statistics. (In most
cases, this extra randomness introduced by multiple imputation is quite minor.)
In large samples, estimates and standard errors obtained by direct maximum
likelihood and by multiple imputation tend to be very similar.

Applications of direct maximum likelihood are now common in longitu-
dinal analyses. Modern algorithms for growth modeling as implemented in hi-
erarchical linear modeling (HLM, Bryk, Raudenbush, & Congdon, 1996), Proc
Mixed in SAS (Littell, Milliken, Stroup, & Wolfinger, 1996), and similar pack-
ages are designed for unbalanced data, where measurements on each participant
may be taken at a different set of time points. Responses that are missing, either
unintentionally or by design, are removed from the likelihood by integration
as in Equation 12.1. An important limitation of these packages is that the
missing values must be confined to the response variable; missing values on
predictors are not allowed. If the individuals in the study have been assessed
at a common set of occasions, models equivalent to those fit by HLM and Proc
Mixed can be formulated using latent growth curves (McArdle, 1988; Meredith
& Tisak, 1990; Willett & Sayer, 1994) and structural equations software. Two
recent programs for structural equations, Mx (Neale, 1994) and Amos (Ar-
buckle, 1995), perform direct maximum likelihood from a raw data set with
missing values. Missing data can be accommodated in other structural equations
software by using the technique of multiple groups (Allison, 1987; Duncan &
Duncan, 1994; Muthén, Kaplan, & Hollis, 1987). An advantage of the latent
growth curve approach is that missing values may occur on predictors as well
as the response; however, the measurements must be taken at a relatively small
number of common time points.

When a direct maximume-likelihood procedure is available for a particular
analysis, it may indeed be the most convenient and attractive method. Despite
the increasing popularity of direct maximum likelihood, however, multiple im-
putation still offers some unique advantages for data analysts. First, it allows
them to use their favorite models and software; an imputed data set may be
analyzed by virtually any method that would be appropriate if the data were
complete. As computing environments and statistical models grow increasingly
complex, the value of using familiar methods and software should not be un-
derestimated. Second, there are still many classes of problems for which no
direct maximum-likelihood procedure is available. For example, in longitudinal
analyses there is no direct maximum-likelihood method for incomplete covar-
iates when occasions of measurement vary by individual.

A third reason why multiple imputation can be more attractive than direct
maximum likelihood is that the separation of the imputation phase from the
analysis phase lends a greater flexibility to the entire process. With multiple
imputation the imputer is free to use additional variables that may be helpful
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consider a covariate that helps to explain reasons for nonresponse. Using this
variable in the imputation procedure tends to reduce bias in subsequent anal-
yses, even in analyses that do not involve that variable.

Finally, an important advantage of multiple imputation over direct maxi-
mum likelihood is that it singles out missing data as a source of random vari-
ation distinct from ordinary sampling variability. The likelihood function Equa-
tion 12.1 lumps these two types of variability together; summary statistics (e.g.,
standard errors) derived from direct maximum likelihood do not reveal two
sources. With multiple imputation, however, the overall uncertainty is formally
partitioned into sampling variability and missing-data uncertainty. This partition
immediately yields an estimated rate of missing information, which can be quite
helpful for assessing the impact of missing data on inferences for any parameter
of interest.

The purpose of this chapter is not to criticize direct maximum likelihood
in favor of multiple imputation; rather, it is my hope that more analysts will
recognize the important advantages offered by both of these modern missing-
data methods and begin to use them instead of case deletion or other ad hoc
procedures. In most real-life applications, missing data are not the main focus
of scientific inquiry but an unpleasant nuisance. Missing data should be handled
quickly and effectively but without compromising the integrity of the analytic
results. Multiple imputation might not be the optimal choice for every analysis,
but it is a handy statistical tool and a valuable addition to a researchers meth-
odological toolkit.

In the remainder of this chapter, I describe a method for creating multiple
imputations in longitudinal databases. Previous algorithms and software for
multiple imputation, as described in Schafer (1997a), have focused on missing
data in general multivariate settings. In response to the specific need for lon-
gitudinal analyses, a library of algorithms called PAN has been developed for
imputing multivariate panel data, where a group of variables is measured for
individuals at multiple time points. Alternatively, PAN may be applied to clus-
tered data where variables are measured at a single point for participants nested
within some larger unit (e.g., students within classrooms). Future versions of
the software will be able to handle repeated measures and clustering simulta-
neously.

PAN is at present available as a library of functions for the statistical pro-
gramming language S-PLUS (MathSoft, Inc., 1997).' Current efforts are focused
on developing a version of PAN that operates as a stand-alone program in the
Windows 95/98/NT environment.
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The PAN Model

Suppose that a group of time-varying continucus variables Y,, Y5, ..., Y, is
measured for individuals i = 1, 2, ..., N at multiple occasions. The responses
for participant i may be arranged as a matrix with one column for each variable
and one row for each occasion,

Yr Yoz 07 }’m--l
}"t = yr:ll }’::zz : e }’;2;- , (12‘2)
-.}Jmil yiﬂ.z T y:nlr_,

where y,, denotes the value of variable Y, at occasion j. The number of occasions
n, and their temporal spacing may vary by participant. 1 assume that missing
values occur throughout the matrices yy, ¥;, ..., ¥» and that these missing
values are MAR. The immediate goal is to multiply impute the missing values
so that the data can be analyzed in a straightforward manner. Ulimately, the
analyst may choose to regard one column of Equation 12.2 as a response and
the other columns as potential predictors in a conventional growth model. For
the moment, however, I regard all r columns of y, as random responses and
model them jointly for the purpose of imputation. I construct a multivariate
growth model to describe the joint distribution of the variables Y,, Y,, .. . | ¥,,
possibly given other time-varying or static covariates that are fully observed and
require no imputation.

The model used by PAN was designed to preserve the following relation-
ships: (a) relationships among the variables Y,, Y, . . ., ¥, within an individual
at each time point. These are reflected by the covariances among the elements
of any row of y,. (b) Growth or change in any variable Y; within an individual
across time points. This growth is reflected by trends within the columns of ..
(c) Relationships between the response variables Y,, Y3, . .., Y, and any addi-
tional participant-level (non-time-varying) covariates included in the model.
The participant-level covariates may be continuous ot categorical, but they must
be fully observed; missing values on these non-time-varying variables are al-
lowed in the current version. Missing values in time-varying covariates are al-
lowed and will be imputed, provided that they are included among Y,
Yy, .., Y

PAN relies on a multivariate extension of a linear mixed-effects model that
has been popular for nearly 20 years. The model is

»=Xp + Zb + &, (12.3)

where X{(n, X p) and Z(m, X ¢q) are known covariate matrices, B contains

regression coefficients commeon to all units, and b; contains coefficients specific
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matrices with r columns, one column for predicting each of the variables Y,
Y,, ..., Y, and & is also a matrix with the same dimensions as y{m, X r}). The
univariate {r = 1) version, which was proposed by Hartley and Rao (1967} and
later popularized by Laird and Ware (1982), Jennrich and Schluchter (1986,
Bryk and Raudenbush (1992), and others, is the basis for many of the linear
growth models in use today. The coefficients B and b, are often called “fixed
effects” and “random effects,” respectively.

With univariate versions of this model, it is common to assume that the
random effects and residuals are independently drawn from normal popula-
tions, b, ~ N(O, y) and & ~ N(Q, o’D),i=1,2,..., N, where yisaq X g
covariance matrix and I is the identity matrix (n, X n;). For the multivariate
case, one generalizes these assumptions to

vec(b) ~ N, ¥) (12.4)
vec(g) ~ N[0, (2 & D], 12.5)

where vec denotes the vectorization of a matrix by stacking its columns. The
covariance matrix ¥ in Equation 12.4 has dimension gr X gr, and the Kro-
necker product notation in Equation 12.5 indicates that the rows of g are
independently distributed as N(0, 2}, where 2 is r X r.

In typical applications, the times of measurement are incorporated into X,
and perhaps Z,, as linear, quadratic, or higher order polynomials, and Z; is a
subset of the columns of X;. For example, suppose that the frst two columns
of X,are (1,1, ..., Diand (¢, 15, . .., -'fn,}T* respectively, where ¢, &;, .. .,
are the times of measurement for participant i; beyond these, X, may have
additional colurmns containing static ot time-varying covariates for participant
i. Setting Z equal to the first column of X, produces a model of linear growth
with intercepts randomly varying by individuals; setting Z, equal to the first
two columns of X, produces random intercepts and slopes. Centering the dis-
tribution of b; at zero causes B to become the population-averaged regression
coefticients and the random effects b,, . .., b, become perurbations due 1o
interparticipant variation.

Note that in this multivariate model all of the covariates in X, and Z; appear
as predictors for each of the columns of y,. As a result, the same group of
predictors and the same type of trend over time (e.g., linear mean growth with
varying slopes and intercepts) are used to describe each of the response variables
Y,, Y,, ..., Y,. The actual coefficients for the response variables, as contained
in the r columns of B and b,, vary, but the same group of predictors is applied
to each response, At first glance, this may appear to be a serious limitation of
the model; in many scientific contexts there is no reason to believe that Yy, Y,
..., Y, should depend on precisely the same set of covariates. One must re-
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meaningful model but to impute missing responses in such a way that impor-
tant relations are preserved. If a covariate appears in subsequent analyses as a
potential predictor of one or more of the response variables Y,, Y,, ..., Y,
then that covariate should be included in the imputation model, even though
its effects on some of the responses may be irrelevant or null. No biases.incur
by using an imputation model that is larger or more general than necessary for
any given analysis. For more discussion on the purpose of imputation modeling
and the interplay between the imputer’s and analyst’s assumptions, see Meng
(1994), Rubin (1996), and Schafer (1997a, chapter 4).

The current version of PAN allows two types of assumptions about ¥, the
covariance matrix for the participant-level random effects b,, b,, . . ., by. One
allows the W matrix to be either (a) an unstructured or arbitrary covariance
matrix or (b) a block diagonal covariance matrix of the form

¥, 0 -+ 0
| q:z A (12.6)
0 o0 W]
where the nonzero blocks ¥,, j =1, ..., r are covariance matrices of size g X

g. The unstructured ¥ allows the random effects for any two responses Y, and
Y, to be correlated, whereas the block-diagonal form assumes that the random
effects for each response are independent of those for any other response.

The choice between these two depends on both theoretical and practical
considerations. Suppose that Y,, Y, . . ., Y, represent achievement scores (math-
ematics, reading comprehension, etc.) recorded for schoolchildren over time,
and one applies a model of linear growth with intercepts and slopes that vary
by individual. If there is reason to believe that growth patterns for the various
achievement scores are related—for example, that participants with high rates
of increase for mathematics may also tend to have high rates of increase for
reading comprehension—then it would be wise to use an unstructured W¥. As
the number of response variables grows, however, it often becomes impractical
to estimate covariances among all of their random effects unless the number of
participants is very large; to obtain a stable estimate for ¥ one may need to
specify a block-diagonal structure. Unless the correlations among the random
effects for some pairs of responses are unusually strong, the potential biases
incurred by using a block-diagonal ¥ rather than an unstructured ¥ tend to
be minor.

The basic strategy for specifying a PAN model can be summarized as fol-
lows. First, any time-varying covariates with missing values should be placed
in the columns of y,, regardless of whether they are treated as “responses” or
“predictors” in later analyses. If a variable is to be imputed, then it must be
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should be included in the columns of X; and, possibly, Z,. These include (a)
variables that may be related to Yy, Yz, . . ., Y, and (b) variables that may explain
missingness on Y,, Y., ..., Y.. Placing a covariate in X; allows it to influence
the distribution of any or all of the variables Y,, Y, . .., Y, in the population.
Placing a time-varying covariate in both X; and Z, allows its degree of influ-
ence on Y,, Y,, . .., Y, to vary across individuals. Note that static or non-time-
varying covariates (e.g., gender or pretest measures) should not be included in
Z; because it is impossible to estimate participant-specific effects for such var-
iables. Finally, polynomial terms such as 1, time, time’, and so on, may be
appended to X, and Z; as desired, to allow the mean levels of Y, Y,, ..., Y,
and the trends in these variables over time to vary across individuals. The choice
of which terms to include will depend on what types of effects are believed to
exist and what effects will be investigated in subsequent analyses.

Compuiational Algorithms

The computational engine of PAN is a Markov chain Monte Carlo (MCMC)
algorithm called a Gibbs sampler. MCMC is a relatively new class of simulation
techniques that are especially useful in Bayesian statistical analyses. A review of
MCMC is beyond the scope of this chapter, but a gentle introduction is given
by Casella and George {1992} and Schaler (1997a, chapters 3—4); more com-
prehensive references are the volume edited by Gilks, Richardson, and Spie-
gelhalter (1996) and the article by Gelfand and Smith (1990). Specific details
and formulas for the computations used in PAN have been provided by me
(Schafer, 1997b; Yucel & Schafer, 1998).

The MCMC algorithm in PAN is based on the observation that the model
specified by Equations 12.3-12.5 has the following unknown components: the

missing values in y, ¥,, . . . . ¥n, the random effects by, b,, .. ., by, the fixed
effects B, and the covariance matrices 2 and . For the purpose of imputation,
1 am interested only in simulating the missing data in y,, v,, . . ., y»; the other

unknown quantities are merely a nuisance. To simulate the missing data prop-
erly, however, one must take into account the uncertainty in these other quan-
tities and how it contributes to missing-data uncertainty. Expressing this un-
certainty through mathematical formulas is difficult, so one accounts for the
interdependence among the unknown quantities through a process of iterative
simulation.

PAN simulates the unknown quantities in a three-step cycle.

}. Draw random values of by, b,, . . ., b, on the basis of some plau-
sible assumed values for the missing data and the parameters B,
2. and Y.
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¥ on the basis of the assumed values for the missing data and the
values of by, b,, . . ., by obtained in Step 1.

3. Draw new random values for the missing data given the values of
b, b,, ..., by obtained in Step 1 and the parameters obtained in
Step 2.

At the end of this cycle the parameters and missing data from Steps 2 and 3
become the values assumed in Step 1 at the start of the next cycle. Repeating
Steps 1, 2, and 3 in turn defines a Markov chain, a sequence in which the
distribution of the unknown quantities at any cycle depends on their simulated
values at the previous cycle. The state of the process at Cycle 2 may be strongly
correlated with its state at Cycle 1, but at subsequent Cycles 3, 4, 5, and so
on, the relationship to the original state weakens. When a sufficient number of
cycles has been taken to make the resulting state essentially independent of the
original state, then the process is said to have converged or achieved stationarity.
On convergence, the final simulated values for the missing data have in fact
come from the distribution from which multiple imputations should be drawn.

This algorithm may be used to create m multiple imputations in the fol-
lowing way. Starting with some plausible initial values, run the Gibbs sampler
for k cycles where k is large enough to ensure convergence, and take the final
simulated version of the missing data as the first imputation; then return to the
original starting values, run the Gibbs sampler for another k cycles, and take
the final simulated version of the missing data as the second imputation; and
so on. This method requires m runs of length k cycles each. Another and
perhaps more convenient way is to perform one long run of mk cycles, saving
the simulated values of the missing data after cycle k, 2k, ..., mk as the m
imputations. The latter method differs from the former only in that the final
values from each subchain of length k become the starting values for the next
subchain of length k.

It is important to note that convergence of an MCMC procedure means
convergence to a probability distribution rather than convergence to a set of
fixed values. To say that the algorithm has converged by k cycles actually means
that the random state of the process at cycle t + k is statistically independent
of its state at cycle t for t = 1, 2, . . .. After running the Gibbs sampler, one can
examine the output stream over many cycles to see how many are needed to
achieve this independence. Suppose that one collects and stores the simulated
values for one parameter 6 (a particular element of B, ¥, or 2) over a large
number C of consecutive cycles. These values 8, 8, .. .| 8 can be regarded
as a time series. The lag-k autocorrelation, which is the correlation between
pairs 0“ and 8P (t = 1,2, ..., C — k), can be calculated for various values
of k to determine how large k must be for the correlations to die down. In
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and identify a value of k large enough to guarantee that the lag-k autocorrela-
tions for all parameters are effectively zero. In my experiences with real data,
however, 1 have found that the greatest levels of serial dependence are almost
always seen in variance and covariance parameters, and in particular within the
elements of ¥. Tt is usually sufficient to monitor the behavior of the elements
of W because it is with respect to these parameters that the algorithm tends to
converge the most slowly. For more discussion on monitoring the convergence
of MCMC algorithms, see Schafer (1997a, chapter 4).

The rate of convergence of this Gibbs sampler is influenced by a combi-
nation of factors pertaining to the data and the model. First, it is affected by

the amounts and patterns of missing data in the matrices y,, y,, . . ., yv; greater
rates of missing information lead to slower convergence. It is also affected by
one’s ability to estimate the individual random effects b, b,, . . ., by; if estimates

of random effects are highly variable, then convergence is slowed. Finally, con-
vergence behavior is also influenced by the number of participants (N). As the
sample size grows, the distribution of the random ¥ matrix at each cycle be-
comes more tightly concentrated around the sample covariance matrix of b,
b, ..., by from the previous cycle. As this distribution becomes tighter, the
elements of ¥ are less free to wander away from their values at the previous
cycle, producing higher correlations from one cycle to the next. It is somewhat
ironic that the algorithm converges more slowly as one’s ability to estimate the
parameters increases. With a large number of participants and a small number
of occasions per participant, it is not uncommon for the Gibbs sampler to
require several hundred or even 1,000 cycles to converge. Slow convergence is
not necessarily a problem, however, because in most cases only a few impu-
tations are necessary. If k = 1,000 cycles are needed to achieve stationarity, then
five imputations can be produced in 5,000 cycles, which even for a large data
set requires no more than a few hours on a personal computer.

In addition to deciding how many cycles are needed, the user must also
specify Bayesian prior distributions for the covariance matrices ¥ and 2.. Bayes-
ian procedures, which are becoming increasingly popular in many areas of
statistical analyses, treat unknown parameters as random variables and assign
prior probability distributions to them to reflect ones knowledge of or belief
about the parameters before the data are seen. An excellent introduction to the
Bayesian statistical paradigm was given by Novick and Jackson (1974); for a
modern overview of Bayesian modeling and computation, see Gelman, Rubin,
Carlin, and Stern (1995). Some statisticians tend to prefer Bayesian procedures
on principle, whereas others avoid them on principle. I hold a pragmatic view,
accepting the prior distribution simply as a mathematical device that allows
one to generate the imputations in a principled fashion. In applications, 1 like
to use prior distributions that are weak or highly dispersed, reflecting a state
af relative ionarance abaiit mode!l marametere Weale mriore tend ta minimize



the subjective influence of the prior, allowing the observed data to speak for
themselves,

The prior distribution most commeonly applied to a covariance matrix is
the inverted Wishart distribution. The Wishart, a natural generalization of the
chi-square to random matrices, is discussed in standard texts on multivariate
analysis (e.g.. Anderson, 1984; Johnson & Wichemn, 1992). The prior distri-
bution for X is

27~ W{a, B), {12.7)

where W(a, B) denotes a Wishart with a degrees of freedom and scale B. The
scale is a symmetric, positive definite matrix with the same dimensions {r X r)
as 2. The degrees of freedom, which should be greater than or equal to r,
govern the spread or variability; lower values of ¢ make the distribution more
dispersed. The user of PAN must provide numeric values for a and B™'. Qur
usual practice is to set @ = v to make the prior as dispersed as possible and
then to set B™' = a2, where £ is a reasonable prior guess or estimate of 2. If
a guess for X is unavailable, the data themselves may be used to obtain one.
Yucel and Schafer (1998) recently developed a new expectation—maximization
algorithm for calculating maximum-likelihood estimates of the parameters 8,
¥, and X from the incomplete data. Running this EM algorithm before the
Gibbhs sampler is an excellent way to obtain a reasonable guess for 2.

In a similar fashion, I also use inverted Wishart prior distributions for the
between-subjects covariance matrix W. H ¥ is unstructured, one assumes ¥™'
~ Wi{c, D) where D is a gr X gr matrix and ¢ > qr. My usual practice is to set
¢ = qrand D' = (¥, where ¥ is a prior guess or estimate of ¥. If ¥ is taken
to be block diagonal as in Equation 12.6, then independent inverted Wishart
prior distributions are applied to the nonzero blocks, ¥, ' ~ Wi(c, D), j = 1,

., 7, where ¢, = g. To make the priors weak, one sets ¢, = q and D;' =
¢, W, where ¥, is an estimate or guess for ys. The EM algorithm described by
Yucel and Schafer {1998) provides a maximum-likelihood estimate for an un-
structured ¢ or estimates of the submatrices ¥, ..., ¥, when ¥ is block
diagonal.

An Example: Expectandcies and Akohol Use in the Adolescent
Akohol Prevention Trial

The Adolescent Alcohol Prevention Trial (AAPT) was a longitudinal school-
based intervention study of substance use carried out in the Los Angeles area
(Hansen & Graham, 1991). In one panel of AAPT, attitudes and behaviors
pertaining to the use of alcohol, tobacce, and marijuana were measured by self-
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typical rates of uncontrolled nonresponse due to absenteeism, attrition, and so
on, which 1 assume to be MAR. This assumption has been given careful con-
sideration by the researchers and appears to be plausible; for example, much
of the attrition is due to students moving to other schools or districts, which
is a1t most only weakly associated with substance use patterns (Graham et al.,
1994).

In addition to this uncontrolled nonresponse, large amounts of truly MAR
missing data (MCAR, in fact) arose by design. The AAPT study made use of an
innovative three-form design in which each student received only a subset of
the items in any vear, as described in chapter 11 of this volume, by Graham,
Taylor, and Cumsille. In some years, certain items were omitted entirely For
the present analysis, 1 examine a cohort of m = 3,574 children and focus at-
tention on three variables: “drinking,” a composite measure of self-reported
alcohol use; POSCON, a measure of the degree to which the student perceives
that alcohol use has positive consequences; and NEGCON, a measure of the
perceived negative consequences of use. Drinking appeared on the question-
naire every year, where POSCON was omitted in Grade 8 and NEGCON was
omitted in Grades 8~10. Missingness rates for the three variables by grade are
shown in Table 12.1; observed means and standard deviations appear in
Table 12.2.

My analysis will focus on the possible influences of POSCON and
NEGCON on drinking. Without missing data, it would be straightforward to
build a growth model for drinking that includes the expectancy measures
POSCON and NEGCON as time-varying covariates. Current software for mul-
tilevel models cannot accommodate missing values on covariates, however, so
I first use PAN to jointly impute the missing values for drinking, POSCON,
and NEGCON,

Notice in Table 12.2 that both the average level of drinking and its variation
increase dramatically over time. This is somewhat problematic, because stan-
dard growth models—and the multivariate model used by PAN —assume con-
stant variance in a response over time. To make the assumption of constant

TABLE 12.1
Missingness Rotes (%) for Three Variables by Grade

GRADE
VARLABLE 5 & 7 8 9 10
Drinking 2 24 24 33 35 44
POSCON 47 55 62 100 66 63
NEGCON 48 56 62 100 100 100
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variance more plausible, I transformed drinking by taking its logarithm (after
adding a small constant to ensure that all values were positive). After this trans-
formation, the increase in variation became much less noticeable. The log-
transformed version of drinking was used both in the imputation procedure
and in subsequent analysis described below, because the transformed version
more closely fit the assumptions of both the imputation procedure and the
analysis. With multiple imputation, however, it is not necessary for variables to
be imputed and analyzed on the same scale. Applying transformations at the
imputation phase can be a highly effective tool for preserving important distri-
butional features of nonnormal variables, regardless of how the variables are
later analyzed (Schafer & Olsen, 1998).

To set up the data for PAN, one first arranges the responses for each in-
dividual in the form of a matrix y; of dimension 6 X 3, with the rows corre-
sponding to occasions (Grades 3, . . ., 10) and columns for drinking, POSCON,
and NEGCON. In devising the imputation model the primary concern is to
preserve growth in the variable drinking and its potential relationships to the
expectancy measures. With only six time points, the model for growth must be
rather simple, so let us posit a linear model with intercepts and slopes randomly
varying across individuals. That is, we create a model in which drinking,
POSCON, and NEGCON are each described by a linear trend with a random
intercept and a random slope, for a total of six random effects in each b..
Random intercepts and slopes are specified by placing (1, 1, 1, 1, 1, 1)" and
(1, 2, 3,4, 5, 6)" into the columns of X; and Z. Finally, to incorporate potential
gender differences, 1 allow the population average slopes and intercepts for boys
and girls to vary by adding two additional columns to each X, matrix: sex; X
(1,1,1,1,1, )T and sex; X (1, 2, 3, 4, 5, 6)7, where sex, is a dummy indicator
for participant i’s gender (O for girl, 1 for boy).

In defining a PAN model, there is no particular importance attached to the
specific coding scheme used to create the design matrices X, and Z,. For ex-
ample, the linear effect of time could have been expressed as (—5, —3, —1, 1,
3, 5) or any other set of equally spaced scores, and the gender effect sex, could
have been coded as any two values (e.g., —1 and +1) rather than as 0 and 1.
The particulars of the coding scheme affect the precise meaning of the param-
eters in B, 2, and ¥, but these parameters are not of inherent interest—the
goal at this stage is not to interpret parameters but to impute the missing values
in y,. Changing the coding scheme in X; and Z; does not change the distribution
of imputed values, provided that the linear space spanned by the columns of
these design matrices does not change.

Table 12.1 indicates that NEGCON is entirely missing for the last 3 years
of the study. It may seem unusual to impute a variable that is entirely missing.
Under this model the likely values of NEGCON for Grades 8-10 are being
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assumption of linear growth, and the residual covariances among the three
response variables in 2, which are assumed to be constant across time. Neither
of these assumptions can be effectively tested with the data at hand, so infer-
ences pertaining to NEGCON are heavily model based. In retrospect, it would
have been very helpful to collect NEGCON in the final year (Grade 10) to
provide more stable estimates of this variable’s growth.

Before running the Gibbs sampler, I first obtained initial estimates of the
unknown parameters B, 3, and ¥ by running the EM algorithm. This EM
procedure, which assumed an unstructured form for ¥, converged in 134 it-
erations and took less than 1 h on a 400 MHz Pentium II computer. The
resulting maximume-likelihood estimates for 3 and ¥ were then used to for-
mulate weak prior distributions as described in the Computational Algorithms
section.

Because of the high rates of missing information, I anticipated that the
Gibbs sampler would converge slowly. To assess convergence, I ran it for an
initial 2,000 cycles and examined time series plots and sample autocorrelations
for a variety of parameters. As anticipated, the elements of ¥ pertaining to the
slopes and intercepts of NEGCON were among the slowest to converge because
of the extreme sensitivity of these parameters to missing data. On the basis of
this exploratory run, it appeared that several hundred cycles might be sufficient
to achieve approximate stationarity. The Gibbs sampler was then run for an
additional 9,000 cycles, with the simulated value of Y, stored at cycles 2,000,
3,000, ..., 11,000. Autocorrelations estimated from cycles 1,001 -11,000 ver-
ified that the dependence in all components of 8 had indeed died down by lag
200, so the 10 stored imputations could be reasonably regarded as independent
draws from P(Y,,|Y,,). The entire imputation procedure took less than 2 hr
with a 400 MHz Pentium 1I.

After imputation, the data were analyzed by a conventional linear growth-
curve model for the logarithmically transformed drinking. The model was sim-
ilar to the one used for imputation, except that POSCON and NEGCON now
appear as time-varying covariates rather than responses. The model included
an intercept and fixed effects for gender, grade, gender X grade, POSCON, and
NEGCON, plus random intercepts and slopes for grade. Time was coded as (1,
2.3, 4,5, 6), and gender was expressed as a dummy indicator (0 for girls, 1
for boys). Parameter estimates were computed for each imputed data set using
a procedure equivalent to that used by standard packages such as HLM.

Finally, the 10 sets of fixed-effects estimates and their standard errors were
then combined using Rubin’s (1987) rules for multiple-imputation inference for
scalar estimands. These rules are summarized as follows. let Q denote the
quantity to be estimated, in this case a regression coefficient. Let @Y’ denote
the estimate of @ from the jth imputed data set, and U, its squared standard
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Q=m'TQY. (12.8)

To obtain a standard error for @, one calculates the between-imputation variance
B=(m— D7'E(EGY — Q) and the within-imputation variance U = m™'ZUY",
The estimated total variance is

T=(1+mHB+ U, (12.9)
and tests and confidence intervals are based on a Student’s ¢ approximation

& — OWVT ~ 1., (12.10)

with degrees of freedom

E]' z
v=(m—1)|:1+(1+m_1)3].

The ratio r = {1 + m™")B/U measures the relative increase in variance due to
missing data, and the rate of missing information in the system is approximately
A= r/(1 + r). A more refined estimate of this rate is

h=r+2!’(v+3)-

T+ {12.11)

The resulis of this procedure are summarized in Table 12.3, which shows
the overall estimates, standard errors, degrees of freedom for the ¢ approxima-
tion, and estimated percentage rates of missing information. All coefficients are
highly statistically significant. The high rates of missing information indicate
that the inferences for all coefficients {except sex) may be highly dependent on
the form of the imputation model and the MAR assumption. The latter as-
sumption is not particularly troubling for these data because the majority of

TABLE 12.3
Estimared Coefficients (Est.), Standard Errors, Degrees of Freedom, and
Percentage Missing Information From Multiply Imputed

Growth-Curve Analysis

VARLABLE EST. 5 o % MISSING
Intercept —2.572 0.084 19 71
Grade (1 = 5th, . .., 6 = 10th) 0.386 0.011 35 33
Sex (0 = female, 1 = male) 0.370 0.046 324 17
Sex X grade —3.105 0.013 88 33
POSCON 0.549 0.023 17 76
NEGCON =0.020 0.023 15 80
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missing values are missing by design. Certain assumptions of the imputation
model, however—in particular, the assumed linear growth for NEGCON and
constancy of the residual covariances across time—are not really testable from
the observed data, so results from this analysis should be interpreted with
caution.

Despite these caveats, the estimates in Table 12.3 provide some intriguing
and plausible interpretations about the behavior of this cohort. The positive
coefficient for sex indicates that boys reported higher average rates of alcohol
use than girls in the initial years of the study. The negative effect of sex X
grade, however, shows that girls exhibit higher rates of increase than boys, so
that the girls’ average overtakes the boys’ by Grade 8. The large positive effect
of POSCON indicates that increasing perceptions about the positive conse-
quences of alcohol use are highly associated with increasing levels of reported
use. The negative coefficient for NEGCON suggests that increasing beliefs about
negative consequences do tend to reduce level of use, but the effect is much
smaller than that of POSCON. These results are consistent with those of pre-
vious studies (e.g., MacKinnon et al., 1991) that demonstrate that perceived
positive consequences may be influential determinants of substance use behav-
ior, but beliefs about negative consequences have little or no discernible effect.

The multivariate mixed model (Equation 12.3) used by PAN is a natural exten-
sion of univariate growth models, which are popular in the analysis of longi-
tudinal data. The imputation procedures described here are appropriate for
longitudinal analyses with partially missing covariates. These methods are also
appropriate for multivariate cross-sectional studies in which units are nested
within naturally occurring groups (e.g., children within schools). The algorithm
and software described in this chapter provide a principled solution to missing-
data problems for this important and frequently occurring class of analyses.
The imputation model and Gibbs sampler can be extended in a number of
important ways. One extension pertains to models with additional random ef-
fects due to higher levels of clustering; this would arise, for example, in mul-
tivariate studies in which individuals are grouped into larger units and multiple
observations on individuals are taken over time. Another useful extension per-
tains to columns of y, that are necessarily constant across the rows 1, ..., n.
In longitudinal studies, these columns would represent covariates that do not
vary over time; in clustered applications, they would represent characteristics
of the clusters rather than the units nested with them. If these covariates have
no missing values, they can be handled under the current model by simply
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must be explicitly modeled for purposes of imputation. If one imposes a simple
parametric distribution on these covariates (e.g., multivariate normal), then it
is straightforward to extend the Gibbs sampling procedure to impute these as
well.

Another useful extension involves interactions among the columns of y,.
The multivariate normal model allows only simple linear associations among
the variables Y,, ..., Y., but in many studies one would like to preserve and
detect certain nonlinear associations and interactions. tn the AAPT example, it
may have been useful to see whether the strong effect of POSCON on drinking
may have been increasing or decreasing over time; the imputation model, how-
ever, imputed the missing values under an assumption of a constant POSCON
X drinking association. Extensions of the multivariate model to allow more
elaborate fixed associations, such as POSCON X drinking X grade, or random
associations, such as POSCON X drinking X participant, are an important topic
for future research.

In the current PAN model, the rows of y, are assumed to be conditionally
independent given b, with common covariance matrix X. This assumption has
been relaxed by Jennrich and Schluchter {1986), Lindstrom and Bates (1988),
and others in the univariate case to allow a residual covariance matrix of the
form ¢’V,, where V, has a simple {e.g., autotegressive or banded) pattern de-
pendent on one or more unknown parameters. Extensions of these patterned
covariance structures 1o a multivariate setting tend to produce models and al-
gorithms that are complex even apart from missing data. For example, the
obvious extension of vec(g) ~ N[0, (2 & D] to vec(e) ~ N[0, & & VI
seems 100 restrictive for many longitudinal data sets, because the response var-
iables Y,, . . ., Y, are then required to have identical autocorrelations. Account-
ing for autocorrelated residuals in a sensible manner may prove to be a daunting
task in the multivariate case. In practice, nonzero correlations among the rows
of € may arise because of a misspecified model for the mean structure over
time. The problem may sometimes be reduced or eliminated by including ad-
ditional {e.g., higher order polynomial) terms for time in the covariate matrices
X ot Z,.
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Computational Strategies for Multivariate
Linear Mixed-Effects Models
With Missing Values

Joseph L. SCHAFER and Recai M. YUCEL

This article presents new computational techniques for multivariate longitudinal or
clustered data with missing values. Current methodology for linear mixed-effects models
can accommodate imbalance or missing data in a single response variable, but it cannot
handle missing values in multiple responses or additional covariates. Applying a multivariate
extension of a popular linear mixed-effects model, we create multiple imputations of missing
values for subsequent analyses by a straightforward and effective Markov chain Monte Carlo
procedure. We also derive and implement a new EM algorithm for parameter estimation
which converges more rapidly than traditional EM algorithms because it does not treat
the random effects as “missing data,” but integrates them out of the likelihood function
analytically. These techniques are illustrated on models for adolescent alcohol use in a
large school-based prevention trial.

Key Words: EM algorithm; Longitudinal data; Markov chain Monte Carlo; Multiple
imputation.

1. INTRODUCTION

1.1 THE MoODEL

Multivariate longitudinal or clustered data are characterized by multiple responses
measured (a) at multiple occasions for each subject or (b) for subjects nested within naturally
occurring groups. Examples include multiple exam or test scores recorded for students
across time, and multiple items at a single occasion for students in more than one school.
Sensible methods for analyzing such data will appreciate both the relationships among the
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response variables and potential correlations among observations from the same individual
or cluster. This article discusses a multivariate version of a popular linear mixed-effects
model for longitudinal or clustered data and applies this model to datasets with missing
values.

Let y; denote an n; X r matrix of multivariate responses for sample unit i, ¢ =
1,2,...,m, where each row of y; is a joint realization of variables Y},Y,,...,Y,.. We
consider situations where portions of yi, ..., y,, are ignorably missing in the sense de-
scribed by Rubin (1976) and Little and Rubin (1987). Our model for the complete data
is

yi = Xy + Z;b; + €, (L.1)

where X; (n; x p) and Z; (n; X q) are known covariate matrices, 8 (p X r) is a matrix
of regression coefficients common to all units, and b; (¢ x r) is a matrix of coefficients
specific to unit . In popular terminology, 8 and b; are called “fixed effects” and “random
effects,” respectively. We assume that the n; rows of ¢; are independently distributed as
N(0,X), and that the random effects are distributed as vec(b;) ~ N (0, ¥) independently
fori =1,...,m (the “vec” operator vectorizes a matrix by stacking its columns). Without
conditioning on by, . . ., by,, the implied model for vec(y;) is normal with mean vec(X;03)
and covariance matrix

W= (@ Z)V(I, @ Z)" + (20 1,,,). (1.2)

3

In longitudinal applications, times of measurement may be incorporated into X; and Z;,
allowing relevant aspects of the growth curves (e.g., intercepts and slopes) to vary by subject.

1.2 PRrEvious WORK

The univariate (r = 1) version of our model,
yi ~ N(Xif3, ZpZ{ +0°1y,), (1.3)

and more general univariate models have been extensively treated by Laird and Ware (1982);
Jennrich and Schluchter (1986); Laird, Lange, and Stram (1987); Lindstrom and Bates
(1988); and others. A variety of software is available for fitting these linear mixed-effects
models. Commercial packages include HLM (Bryk, Raudenbush, and Congdon 1996) and
MLn (Multilevel Models Project 1996). Similar procedures are now found in SAS (Littell,
Milliken, Stroup, and Wolfinger 1996), S-Plus (Mathsoft, Inc. 1997), and STATA (Stata
Corporation 1997). These programs can handle unbalanced longitudinal data, with mea-
surements taken at an arbitrary set of time points for each subject. Responses that are
missing, either unintentionally or by design, are ignored in the computations along with the
corresponding rows of X; and Z;. An important limitation of these methods is that missing
values must be confined to the single response variable; missing values on predictors are
not allowed.
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Despite the popularity of single-response models, multivariate versions have received
scant treatment in the literature. A model similar to (1.1) was considered by Reinsel (1984)
who derived closed-form estimates with completely observed y; and balanced designs. More
recently, Shah, Laird, and Schoenfeld (1997) extended the EM-type algorithm of Laird and
Ware (1982) to a bivariate (r = 2) setting. In common econometric terminology, their model
is analogous to “seemingly unrelated regression” (Zellner 1962) whereas ours corresponds
to “standard multivariate regression.” The added generality of the seemingly unrelated
model comes at a high cost, making the resulting algorithms impractical for more than a
few response variables. In certain situations, it may be possible to recast the multivariate
model as a univariate one by stacking the columns of y; and applying existing software
(e.g., SAS Proc Mixed) with a user-specified covariance structure. In most applications,
however, this approach quickly becomes impractical. Examples for only » = 2 response
variables with complete data (Shah, Laird, and Schoenfeld 1997) and incomplete data
(Verbeke and Molenberghs 2000) require complicated SAS macros. As the number of
variables and number of individuals or time-points per cluster grow, the dimension of the
response increases rapidly, and usage of SAS Proc Mixed becomes practically impossible.

Perhaps one reason why little attention has been paid to the multivariate models is that
it is often natural to regard one of the variables as a response and the others as potential
predictors. When the predictors have missing values, however, joint modeling of the multiple
responses becomes helpful or even necessary; some type of modeling assumptions must
be applied to Y7, ..., Y, to achieve an efficient solution, even if the parameters of interest
pertain only to the conditional model for one variable given the others.

In panel studies where individuals are assessed at a common set of occasions, models
equivalent to ours may be formulated as latent growth curves (McArdle 1988; Meredith
and Tisak 1990) and fit with structural-equations software. Two programs for structural
equations, Mx (Neale 1994) and Amos (Arbuckle 1995), perform ML estimation from
datasets with missing values. In principle, missing values can also be accommodated in other
structural-equations software using a multiple groups approach (Allison 1987; Muthén,
Kaplan, and Hollis 1987) but the implementation can be tedious. A disadvantage of the
latent growth-curve formulation is that the measurements must be taken at a small number
of common time points for all subjects. The method does not apply to clustered situations
where the rows of y; represent subjects nested within a group.

Schafer (1997) derived likelihood-based and Bayesian methods for independent multi-
variate observations with arbitrary patterns of missing values. In certain cases, this method-
ology can be applied to longitudinal data by treating the same outcome at different time
points as distinct variables. Because this approach does not take into account the longi-
tudinal structure, it may introduce more parameters than can be well estimated from the
observed data.

1.3 ScopPE oF THIS ARTICLE

In the following sections, we develop computational techniques for applying the
multivariate linear mixed model (1.1) to datasets with missing values. Two approaches
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are discussed. The first one, described in Section 2, is to generate multiple imputations for
the missing values using Markov chain Monte Carlo (MCMC). We extend the methodology
of Schafer (1997) to groups of correlated multivariate observations, making it applicable to
a variety of cluster samples and panel studies. In one sense, the material in Section 2 could
be regarded as straightforward application of existing MCMC methods described elsewhere
(e.g., Gilks, Richardson, and Spiegelhalter 1996). However, many of the the details of our
implementation—especially where missing data are involved—might not be obvious even
to readers familiar with MCMC. With careful attention to these computational details, the
method is very effective and may be applied to datasets that are quite large.

Section 3 describes a second set of techniques which produce maximum-likelihood
estimates or posterior modes. These methods may be used to estimate the parameters of
model (1.1) directly from the incomplete data. They may also be used in conjunction with
the MCMC methods of Section 2, helping the user to obtain good quality starting values and
to select prior distributions for unknown variance components. Mode-finding algorithms are
also helpful for testing model fit. The major innovation of Section 3 is a newly formulated
EM algorithm which performs substantially better than previous methods.

Section 4 illustrates our methods by applying them to data from the Adolescent Alcohol
Prevention Trial, a longitudinal study of substance-use attitudes and behaviors. Finally,
Section 5 discusses the limitations of our model and future extensions. Procedures discussed
here will be made available in a stand-alone program called PAN (Schafer and Yucel 2001)
which operates in the Windows environment. PAN can be downloaded free of charge from
http://www.stat.psu.edu/~jls/misoftwa.html.

2. METHODS FOR MULTIPLE IMPUTATION

2.1 MuLtIPLE IMPUTATION BY MCMC

Suppose that portions of Y = (y1,%2,...,¥m) are ignorably missing. Let y;(ons)
and ¥;(mis) denote the observed and missing parts of y;, respectively, and let Yops =
(Y1(0bs)» Y2(obs)» - - - » Ym(obs)) AN Yinis = (Y1 (mis)» Y2(mis)s - - - » Ym(mis)) denote all observed
and missing responses. Unknown parameters are denoted by 6§ = (5, X, ¥). For the fixed
effects and residual covariances, we assume that § € RP" and ¥ > 0. Depending on the
application, we may allow W to be either (a) unstructured or (b) block diagonal with r
nonzero blocks of size ¢ x g corresponding to the individual columns of b;.

Multiple imputation, developed by Rubin (1987, 1996), is an increasingly popular
method for handling missing values. For multiple imputation, we generate M independent
draws Y\

A Ynsf ) from a posterior predictive distribution for the missing data,

P (Vs | Yans) = / P(Yos | Yoo, 0) P(8] Yons) ), @.1)

where P (6| Yops) is the observed-data posterior density, which is proportional to the product



MULTIVARIATE MIXED MODELS WITH MISSING VALUES 441

of a prior density 7(6) and the observed-data likelihood function
L(0|Yops) = /L(Q |Y) dYmis-

After imputation, the resulting M versions of the complete data are analyzed separately
by complete-data methods, and the results are combined using simple arithmetic to obtain
inferences that effectively incorporate uncertainty due to missing data. As shown by Rubin
(1987), quality inferences can often be obtained with a very small number (e.g., M = 5)
of imputations. Methods for combining the results of the complete-data analyses are given
by Rubin (1987, 1996) and reviewed by Schafer (1997, chap. 4).

When a model is used as a device for imputation, the meaning or interpretation of its
parameters is not crucial; the utility of the model lies in its ability to predict and simu-
late missing observations. A sensible imputation method for multivariate longitudinal or
clustered data should preserve basic relationships among variables and correlations among
observations from the same subject or cluster. The model (1.1) is capable of preserving these
effects. In many cases, post-imputation analyses will be based on models less elaborate;
for example, a model for one response variable given the others. In other cases, effective
analyses may be carried out under a model somewhat different from that used to impute
missing values. The performance of multiple imputation when the imputer’s and analyst’s
models differ was addressed by Meng (1994) and Rubin (1996). In practice, inference by
multiple imputation is fairly robust to departures from the imputation model because that
model effectively applies not to the entire dataset but only to its missing parts. We have used
(1.1) as the basis for imputing binary and ordinal responses, rounding off the continuous
imputed values to the nearest category. Simulations have shown that the biases incurred by
such rounding procedures may be minor (Schafer 1997). At best this is only an approximate
solution; a more principled but complicated approach may involve introducing random ef-
fects into the general location model for multivariate data with continuous and categorical
variables (Olkin and Tate 1961; Schafer 1997).

Except in trivial special cases, the posterior predictive distribution (2.1) for our model
cannot be simulated directly. We create random draws of Y5 from P(Ynis | Yobs) by
techniques of Markov chain Monte Carlo (MCMC). In MCMC, one generates a sequence of
dependent random variates whose distribution converges to the desired target. Overviews of
MCMC were given by Gelfand et al. (1990); Smith and Roberts (1993); Tanner (1993); and
in the chapters of Gilks, Richardson, and Spiegelhalter (1996). Schafer (1997) described
MCMC for multivariate continuous and categorical missing data problems, but did not
consider mixed models with random effects. Applications of MCMC to univariate linear
mixed models have been made by a number of authors, including Gelfand, Hills, Racine-
Poon, and Smith (1990); Zeger and Karim (1991); Liu and Rubin (1995); and Carlin (1996).
These MCMC methods rely on simplifications that result when the random effects are
assumed known. If B = (by,b,...,b,,) were known, then inferences about 6§ would
separate into two simpler problems: (a) a normal-theory inference about ¥ based on B,
and (b) a normal-theory inference about (/3,3) based on (y; — Z;b;), i = 1,...,m. This
simplification is also an underlying feature of conventional EM algorithms for random-
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effects model as well, to be discussed in Section 3. Unlike EM, however, MCMC allows
us to circumvent manipulations on large matrices by alternately conditioning on simulated
values of the random effects and the missing data.

2.2 A GiBBS SAMPLER

In a slight abuse of notation, let A* ~ P(A) denote simulation of a random variate A*
from a distribution or density function P(A). Consider an iterative simulation algorithm
in which current versions of the unknown parameters ) = () %(1) w(%)) and missing
data Y are updated in three steps: first,

mis
B~ p (bi | K)bs,ynﬂfg,mt)) 2.2)
independently for i = 1,...,m; next,
Ut o p (9 | %bS,YnEQ,B““)); 2.3)
and finally,
Uit ~ P (it | Yooss BEFD, 005D 2.4
for i = 1,...,m. Given starting values 6(°) and Yng&), these steps define one cycle of

an MCMC procedure called a Gibbs sampler. Executing the cycle repeatedly creates se-
quences {#1), #?) ..} and {Yn(ﬁls)7 Yn(ﬁzs), ...} whose limiting distributions are P (6 | Yops)
and P(Ymis | Yobs ), respectively.

Implementing (2.3) requires a prior distribution for 6. It is known that in mixed-effects
models, improper prior distributions for the covariance components may lead to Gibbs
samplers that do not converge to proper posteriors, even though each step of the cycle
is well-defined. For this reason, proper prior distributions for the covariance matrices are
highly recommended. For simplicity, we apply independent inverted Wishart priors X =1 ~
W(v1,Ar) and =1 ~ W (v, Ay), where W (v, A) denotes a Wishart variate with v > 0
degrees of freedom and mean ¥A > 0. This prior is appropriate for a model with unstructured
U; versions for block-diagonal ¥ will be discussed later. These priors exist provided that
Ay > 0,A; >0,v; > rand v, > gr. In choosing values for the hyperparameters, it
is helpful to regard uflAfl and v, IA; ! as prior guesses for ¥ and ¥ with confidence
equivalent to v; and v, degrees of freedom, respectively. Small values for v; and v, make
the prior densities relatively diffuse, reducing their impact on the final inferences. For /3,
we use an improper uniform “density” over RP".

Under these priors, each of the steps (2.2)—(2.4) is derived by straightforward applica-
tion of Bayes’ theorem. In our model, the pairs (y;, b;) are distributed as

VCC(yi) | blvo ~ N(VCC(X16+Z1b’L)7 (E®Inl))7
vec(b;) |0 ~ N(0,7)



MULTIVARIATE MIXED MODELS WITH MISSING VALUES 443

independently for i = 1, ..., m. It follows that
vec(b;) |yi, 0 ~ N(vec(b;),U;),

where

vee(b;) = U ('@ Z8) vec(y; — Xip), (2.5)
U = (v'+E'twzlz)) " (2.6)

Simulation of § in (2.3) proceeds as follows: First, draw U ~! from a Wishart distribution
with degrees of freedom v/} = v, + m and scale A = (A;' + BTB)~!. Next, calculate
the ordinary least-squares coefficients

m -1 m
i () (S zm)
i=1

i=1

and residuals &; = y; — X; B — Z;b;, and draw X! from a Wishart distribution with degrees
of freedom v = vy —p+ Y .-, n; and scale A} = (Ail + > eTe) -1 Finally, draw
(£ from a multivariate normal distribution centered at 5 with covariance matrix > ® V,
where V' = (Z:’;l XTx; )71. For simulating £, it is helpful to note that if G and H are
upper-triangular square roots of ¥ and V, respectively (GTG = ¥ and HTH = V), then
G ® H is an upper-triangular square root of ¥ ® V.

To carry out the final step (2.4) of the Gibbs sampler, notice that the rows of ¢; = y; —
X, 8— Z;b; are independent and normally distributed with mean zero and covariance matrix
3. Therefore, in any row of ¢;, the missing elements have an intercept-free multivariate
normal regression on the observed elements; the slopes and residual covariances for this
regression can be quickly calculated by inverting the square submatrix of 3 corresponding
to the observed variables. Drawing the missing elements in ¢; from these regressions and
adding them to the corresponding elements of X;3 + Z;b; completes the simulation of

Yi(mis)-

2.3 IMPLEMENTATION ISSUES

The Gibbs sampler defined by (2.2)—(2.4) is not the only one that could be implemented
for this problem; as noted by Liu and Rubin (1995) in the univariate case, a wide variety of
alternative MCMC algorithms are possible. If any of the steps (2.2)—(2.4) could be carried out
without conditioning on simulated values of Y, or B, then the algorithm could be made
to converge in fewer iterations. De-conditioning may greatly increase the computational
cost per iteration, however, and some limited experience suggests that the additional effort
required to do so is not worthwhile. With modern computers, iterations of (2.2)—(2.4) can
be performed quickly even with the large datasets provided that sufficient physical memory
is available to store Yy, Yngi) , and the covariate matrices X; and Z;.

The convergence behavior of this algorithm is governed by two factors: the amount of
information about 6 carried in Yy,;s relative to Y; and the degree to which the random
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effects b; can be estimated from y;. If the missing portions of y; exert high leverage over
components of 6, or if the b; are poorly estimated (i.e., if the within-unit precision matrices
Y1 ® ZI' Z; tend to be small relative to 1)~ '), then convergence can be slow. Convergence
may also be slow when the number of subjects m is large, because for large m the posterior
distribution for ¥ given by, . . . , b, becomes very tight, causing the drawn value for ¥ to be
close to its previous value. When producing multiple imputations, slow convergence is not
disastrous because in most cases only a few independent draws of Yp,;s are needed. If the
algorithm is believed to achieve approximate stationarity by 7" cycles, then M imputations of
Yhis can be generated in M7 cycles. Convergence can be informally assessed by examining
time-series plots, autocorrelations, and so on. for individual elements or functions of . In
particular, one should pay close attention to the elements of ¥ because these parameters tend
to exhibit high autocorrelations. Formal and informal convergence diagnostics for MCMC
were discussed by Gilks, Richardson, and Spiegelhalter (1996) and Schafer (1997, chap.
4).

Notice that any row of y; that is completely missing may be omitted from consideration,
along with the corresponding rows of X; and Z;, without changing the form of the complete-
data model (1.1). Ignoring these rows will eliminate unnecessary computation at each cycle
and reduce the rate of missing information, speeding the overall convergence. These rows of
data may be restored at the final imputation step (2.4) to produce a fully completed dataset.

2.4 PRIOR GUESSES AND ALTERNATIVE COVARIANCE STRUCTURES

When specifying values for the hyperparameters, our usual practice is to set v; = r and
v, = qr to make the priors as dispersed as possible and minimize their subjective influence.
We typically set Afl =13 and Ay ' = 1, ¥, where ¥ and ¥ are reasonable prior guesses
for ¥ and W. If no prior guesses are available, the data themselves may be used to obtain
them; the EM algorithms of Section 3 are excellent tools for pursuing these guesses.

Excellent prior guesses for ¥ and ¥ may also be obtained by temporarily supposing
that X is diagonal and W is block-diagonal. Under these conditions, the multivariate model
separates into independent univariate models for each of the r columns of y;, and ML
or RML estimates of the variance components may be quickly calculated using existing
software for linear mixed-effects models. When data are sparse and some aspects of > or ¥
are not well estimated, diagonal and block-diagonal prior guesses for > and ¥, respectively,
tend to stabilize the computational procedures in much the same way that ridge regression
stabilizes estimated coefficients when collinearity is present. The use of ridge-like priors
with incomplete and sparse multivariate data was described by Schafer (1997).

When modeling a large number of response variables at once, it may be advantageous to
restrict U to a block-diagonal structure—not only for the purpose of obtaining prior guesses,
but also when running the Gibbs sampler itself. If U is block-diagonal, then independent
inverted Wishart prior distributions may be applied to the ¢ X ¢ nonzero blocks, \11]71 ~
W(v;,Aj)forj =1,2,...,r. Weak priors are obtained by setting v; = g and Aj_l =v; \Ijj,
where W is an estimate or prior guess for ;. The distributions for these blocks in step
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(2.3) become W' ~ W (v}, A}), where v = vj +m, A" = A7" + 377 bk

i and b, j
is the jth column of b;.

The choice between an unstructured or block-diagonal ¥ will depend on both theoretical
and practical considerations. A block diagonal structure indicates no a priori associations
between the random effects for any two response variables Y; and Y. In a multivariate
cluster sample with many variables, many units per cluster, but relatively few clusters, it may
simply not be possible to estimate covariances among the random effects for all response
variables. It is important to note that even if ¥ is block-diagonal, the columns of b; are not
independent in an a posteriori sense because (2.6) is not block-diagonal. A formal likelihood
ratio test to choose between the unstructured and block-diagonal forms for % is possible

with the EM procedures in Section 3.

3. ALGORITHMS FOR MODE-FINDING

3.1 IMPORTANCE OF MODE-FINDING PROCEDURES

The Gibbs sampler of Section 2 is an effective method for imputing missing values
in the y; matrices under the multivariate model (1.1). In principle it may also be used to
simulate Bayesian estimates for 6, but in many cases estimates are more easily found with
EM. Deterministic parameter estimation or mode-finding algorithms are a desirable accom-
paniment to MCMC simulation procedures (Gelman, Carlin, Stern, and Rubin 1995; Carlin
1996; Schafer 1997). MCMC requires starting values for the unknown model parameters;
ML estimates can provide excellent starting values. As described earlier, ML estimates
may provide guidance for specifying prior distributions required by MCMC. Finally, an
algorithm for ML estimation can help to reveal pathological situations where the likelihood
function is unusually shaped, with multiple modes or suprema on the boundary.

The first method is a Fisher scoring procedure which applies when yy, ..., y,, are
fully observed. The second method, discussed in Section 3.3, is a new EM algorithm which
incorporates Fisher scoring into the M-step; this procedure may be used when the response
matrices y; are partially missing. This new EM algorithm tends to converge more quickly
than conventional EM algorithms for mixed-effects models because the random effects are
not included in EM’s formulation of “missing data.” Implementation of the new algorithm
is somewhat more complicated, but the per-iteration execution time compares favorably to
that of conventional EM in many examples. In a few cases, this new algorithm is less stable
than conventional EM. A hybrid procedure that combines stability with rapid convergence
is described in Section 3.4.

3.2 FISHER SCORING

After the general presentation of EM by Dempster, Laird, and Rubin (1977), EM and
its extensions have been extensively applied to the univariate model (1.3). EM is designed
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for ML estimation with incomplete data and in situations that can be formulated as missing-
data problems. Conventional applications of EM to mixed-effects models treat the random
coefficients as missing data, capitalizing on a factorization of the augmented-data likelihood,

L(0|Y,B) = L(¥|B) L(8,0°|Y, B). 3.1)

The overall maximum of (3.1) with respect to 6 can be found by maximizing each of the
two factors separately, neither of which requires iteration. Each cycle of EM maximizes the
expected logarithm of (3.1), where the expectation is taken with respect to the conditional
distribution of B given Y with the parameters fixed at their current estimates. With some
effort, these EM conventional algorithms for the univariate model can be extended to the
multivariate case. Shah, Laird, and Schoenfeld (1997) extended the EM-type algorithm
of Laird and Ware (1982) to a bivariate (r = 2) response, both for complete y; and for
incomplete y;.

Conventional EM algorithms which operate on (3.1) may suffer from very slow con-
vergence. We have found that when there are no missing values in y;—or, more generally,
when entire rows in y; are missing—the likelihood can be maximized more quickly by
Fisher scoring.

The likelihood function arising from the marginal normal distribution for y; is

L(F) H W |'/2 exp {—;@TWMZ} ,

i=1
where §; = vec(y; — X;0) and W; is defined by (1.2). Using the relationship |W;| =
|YX®1,,|~'|¥|~!|U;| and ignoring constants of proportionality, the logarithm of L becomes

N m 1 & I o
0(0) = =~ log S| — = log|¥[ + 5 > log|U;| - 5252. W;6;. (3.2)

i=1 i=1
Fisher scoring updates the current estimate §(*) by solving the linear system C(‘+1) = d,
where C' = —FE"(0®)) and d = CO® + /(™). Upon convergence, the final value of
C~! provides an estimated covariance matrix for 0.

For convenience, we take derivatives with respect to 8 and the nonredundant elements
of U~ and ¥~!. These matrices can be expressed as

g
E w; Gy,
=1

h
—1
by = ZUij’
j=1

where G1,Ga,...,Gg and Fi, F>, ..., F}, are known symmetric matrices of dimensions
rq x rq and r x r, respectively. The number of free parameters in ¥ is g = rq(rq +1)/2

\I/_l

when ¥ is unstructured and g = rq(q+ 1)/2 when it is block-diagonal. The first derivatives
of £(0) are 0¢/dvec(B) = —T'~'vec(8 — ),

(,;{ifj = % Z:ZI tr (\I/ - U; — Vec(i),;)vec(i),;)T)Gj,
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and

A1
8(71 o 2i:

> (mSF — (F ® 2] Z:)U; — vec(&) Fivee(&)" ) ,

—_

where vec(¢;) = vec(y; — X;f — Zil;i), and [ is obtained by generalized least squares
(GLS),
m
vec() = T Z(IT ® Xi)T Wi vee(y:),

i=1
m

Z(Ir @ X)TWi(I, ® X;).

i=1

1-171

Taking expectations over the distribution of y; for fixed 6, one can show that E(f) =
B, E(vec(b;)) = 0, and E(vec(b;)(vec(b;))T)=W — U;. Using these facts and algebraic
manipulation, it follows that

0%
b <8VCC(5)8(veC(6))T> =

and
2 2
E(‘”T> :E(“T) o
Ow;0(vec(B)) do,;0(vec(B3))
Moreover,
0% 1™
= —= U — UG (¥ — U,
E <3wj8wk> 2 ;tr( Ul)GJ (\Ij U'L>Gk:a
E oL = —fitrU(F ® ZL Z)\U,G,
Ow;0ay, B 2 P ik i Zi)Yi g,
826 1 m
E = — SFNF
(80j80’k> zgtr(n J k

— (P @ Z] Z;)U;(Fy, © Z] Z;)
—2F;SF, ® Z] Z;)U;) .
Because the cross-derivatives of § with the covariance parameters have zero expec-

tation, the scoring step for # separates into independent linear updates for 5 and (¥, ).

The updated estimate for 3 is the GLS estimate 3 under the current estimated covariance

parameters. Collecting the free covariance parameters into vectors, w = (wy, ws, . . ., wg)T,

o= (01,02,...,00)T,and n = (wWT,0T)7T, the updated covariance estimates are found

by solving Cn{tT!) = d with
%0 a4
E E
( dwdw” ) ( Owdo™

o™ oM
E (608WT> E (8080T )

C=—
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and d = On® + ¢'(n). Updated estimates for ¥ and Y. are obtained by inversion of
>_;w;Gj and 3~ 0, F;. In typical situations, the algorithm converges by 10-15 cycles.
Note that scoring-updated estimates for ¥ and X are not guaranteed to be positive definite;
if the estimates stray outside the parameter space, a step-halving procedure is used to bring
them back in.

3.3 EM ALGORITHM

We now discuss a procedure that can be used when arbitrary portions of the response
matrices Y = (y1,42,. .., Ym) are ignorably missing. We embed our scoring procedure
within an EM algorithm which augments the observed data with missing portions of y;
but not random effects. The performance of this algorithm is best when the proportion of
partially observed rows in y; is small, and degrades if the observed data become very sparse;
however, it does not tend to slow down merely when the random effects are poorly estimated.
The E-step calculates the expectation of the complete-data log-likelihood function (3.2)
with respect to the conditional distribution of Yy,;s given Ygps under a current estimate of 6.
The M-step updates the estimate of 6, maximizing this expected log-likelihood by scoring.
Details are provided below.

For the E-step, note that (3.2) is a linear function of the sufficient statistics vec(y;)
and vec(y; )vec(y;)T . It follows from (1.1) that vec(y;) and vec(b;) are jointly normal with
covariance matrix

(Ir Y Zi)qj(lr Y Zi)T (Ir ® Zi)\l’

V(I @ Z;)" v G

One way to find the necessary expectations is to begin with (3.3), whose dimension is
(rq + rn;) x (rq + rn;), and apply an orthogonalization method (e.g. sweep) for ¢ =
1,2,...,m.This strategy may work in small examples but becomes prohibitively expensive
as n; or r grows. Instead, we capitalize on the fact that the rows of y,; are conditionally
independent given b; with constant covariance.

Consider the expectation of the first complete-data sufficient statistic,

E(yz | yi(obs)) =k (E(yz | Yi(obs)» bz) | yi(obs)) .

This calculation requires access to the distributions of y;(mis) given (yi(obs), b;) and b; given
Yi(obs)- The former is simple because, given b;, the rows of y; = y; — X;8 — Z;b; are
independent and identically distributed as N (0, ). Therefore, the missing elements in
any row of y; have, given the observed elements and b;, an intercept-free regression on
the observed elements; the parameters of this regression can be obtained by inverting the
square submatrix of 3 corresponding to the observed elements. Letting y;‘j(mis) and yjj(obs)
denote the missing and observed portions of the jth row of 37, we have

E(ij(mis) | Yi(obs)» bl) = Z2121711y:<j(0bs)7

where Y1 is the square submatrix of X corresponding to the observed elements and X5 is
the rectangular submatrix of covariances between the missing and observed elements.
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Finally, because y; is a linear function of b;, the expectation of y; without conditioning
on b; is obtained by direct substitution of £(b; | /;(obs)) for b;. Notice that the value of ¥, 3y,
varies by missingness pattern but not by observational units ¢ = 1,2, ..., m; computations
can be reduced by grouping rows with identical missingness patterns across units. The
parameters of the distribution of b; given y;(ops) are obtained by applying a reverse-sweep
procedure to b; and Uj, as defined in Section 2.2, to de-condition upon ; ms) -

For the second sufficient statistic vec(y;)vec(y;)T, one can apply a similar argument,
first calculating the conditional expectation given b; and y;(obs), then averaging over the
distribution of b; given y;(ons). Let ;5 denote the kth element of the jth row of y;. The
formula for the expectation of y;;1y;;/1 depends on whether y; ;3 and y;;;/ are observed
or missing, and whether they are in the same (j = j') or different (j # ;') rows. It is
easy to see that the expectation of Y.y /1 ZIVEN Y;(ops) 18 given by: vk Yk if both are
observed; yijr E(yij k' | Yi(obs)) if Yijn is observed and y; ;¢ is missing; and

E(Yijk | Yicobs)) B (Yigrkr | Yicovs)) + €OV (Yisks Yijr k' | Yicobs))

if both are missing. The covariance between ;1 and y;j/x/ given y; (obs) is equal to

cov(Aijr, Aijrrr | Yiovs)) + [E22-1]krr

if they are in the same row, and
cov(Agjr, Aijrrr | yi(obs))

if they are in different rows, where
Aijke = EYijr | bis Yiobs))

comes from the regression predictions for the missing elements in the jth row of y; given
the observed elements. The covariance cov(A;jx, Aij/x | Yi(obs)) is obtained by noting that
it is a linear function of the elements of the covariance matrix for b; given y;(os)-

The M-step requires us to maximize the expected log-likelihood computed in the E-
step. This expected log-likelihood has nearly the same form as (3.2) and can be maximized
by a slight modification of the Fisher scoring procedure. Minor changes must be made to
the function ¢ and its first derivatives, but the expected second derivatives remain the same.
The first derivatives of ¢, = E(¢ | Yis) with respect to the elements of 6 are

al, U N
dvec(B) (Z(Ir ® X;)TWi(I, ®Xz-)> vec(B8 — ),
=1
ol 1 &
¢ = DNMu(U-U - (""'ezl'Z)
&uj 2; (
UTU(2 ' ® 21 2,))Gj,
o 1 &
¢ = 2N w(mXF - (F®ZF Z)U;
3o, 2; (nSF — (B )

~Wi(SFE @ 1, )W;T;) ,
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where
vec(f) = FZ(IT®Xi)TWiE(VeC(yi) | 6, Yiobs))s
=1
T, = E{vec(y; — XiB)vec(yi — XiB)" |Yi(ons), 0} -

After calculating these derivatives, we update the parameters in the same fashion as in
Section 3.2.

In practice, it is not necessary to iterate until the scoring procedure converges within
each M-step; one step of scoring is usually sufficient, provided that /. has increased. The
resulting procedure becomes a generalized EM (GEM) algorithm rather than EM, in the
terminology of Dempster, Laird, and Rubin (1977), and is usually well-behaved. Slightly
faster convergence can often be achieved by a simple reparameterization, taking logarithms
of the diagonal elements of ¥~! and X ~! for scoring, which seems to help when the
maximum lies near the boundary of the parameter space. Derivatives with respect to these
parameters are found by the expressions above and a chain rule.

3.4 FURTHER POINTS

Mode-finding algorithms, especially scoring, may require good starting values. We
obtain starting values as follows: For each response variable Y;, we fit univariate linear
mixed model (1.3) using the cases for which Y; is observed. Fast and stable algorithms
described in a technical report (Schafer 1998) provide ML estimates for the portions of X,
V¥ and $ pertaining to Y. Off-diagonal elements of ¥ and blocks of ¥ are initially set to
ZEero.

Although our algorithm converges more quickly than conventional EM methods for
mixed-effects models, it may be less stable when the log-likelihood is oddly shaped. To
improve stability, we combine our method with a conventional EM procedure based on the
augmented-data likelihood (3.1), substituting one step of conventional EM if a single step
of scoring fails to increase the log-likelihood.

If random effects are eliminated (¥ = 0), the model reduces to a standard multivariate
regression y; = X;[ + ¢; where the rows of ¢ are independently distributed as N (0, X).
In this situation, ML estimates of (3,Y) may be found by a straightforward extension
of EM algorithms for incomplete multivariate normal data (Schafer 1997, chap. 5). Note
that a hypothesis test for ¥ = 0 should not be performed by standard likelihood-ratio
methods because the null model places rq parameters on on the boundary of the parameter
space, making the limiting distribution under null hypothesis rather complicated (Stram and
Lee 1995). The standard chi-square limiting distribution does apply when testing the null
hypothesis that U is block-diagonal versus the unstructured alternative.

As an alternative to Fisher scoring, one might consider optimizing the expected log-
likelihood by a sequence of constrained maximizations. For example, one could maximize
with respect to 8 holding (¥, X) constant; then with respect to ¥ holding (3, 3) constant;
and then with respect to ¥ holding (3, ¥) constant. This would produce an ECM algorithm,
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a useful generalization of EM described by Meng and Rubin (1993). In this example,
however, two of the three constrained maximizations would require an iterative method
such as Newton—Raphson, leading to no substantial simplification.

As with any EM algorithm, the procedure of Section 3.3 does not automatically pro-
duce correct standard errors for parameter estimates. If necessary, standard errors could be
found by the supplemented EM (SEM) method of Meng and Rubin (1991). In most cases,
however, multiple imputation as described in Section 2 will produce standard errors in a
more straightforward and less cumbersome fashion.

Finally, consider the related problem of restricted maximum likelihood (RML) esti-
mation, which maximizes the indefinite integral of the likelihood with respect to /3. This
function is

m 1 ~
Li(0) o T2 Wil exp {_zvec(yi — X;3)" Wivec(y; — Xzﬂ)} ;

i=1

where I" and 3 are as defined in Section 3.2. Our algorithms for ML estimates may be
modified to compute RML estimates. One may approximate the expected second derivatives
of £1(0) = log L (0) by the expected second derivatives of £(6), but first derivatives are
more complicated because [3 is a function of the unknown covariance parameters. These
changes affect both the scoring procedure for complete y; and the M-step for incomplete

Yi.
4. EXAMPLE

4.1 ADOLESCENT ALCOHOL PREVENTION TRIAL

Data for this example were taken from the Adolescent Alcohol Prevention Trial (AAPT),
a longitudinal school-based intervention study of substance use in the Los Angeles, CA,
area (Hansen and Graham 1991). A sample of 3,574 school children received question-
naires yearly in grades 5—10 to measure substance-use attitudes and behaviors. We exam-
ined three important variables derived from the AAPT questionnaire: Y} = DRINKING, a
composite measure of self-reported alcohol use; Y, = POSCON, a measure of the perceived
positive consequences of use; and Y3 =NEGCON, a measure of the perceived negative
consequences of use. Many values of these variables were missing due to absenteeism and
attrition, which we will assume to be ignorable (Little and Rubin 1987; Rubin 1976). The ig-
norability assumption has been considered in detail by Graham, Hofer, and Piccinin (1994)
and is thought to be somewhat plausible; the primary reasons for attrition were ordinary
moving and migration of students among schools and districts. Moreover, a large portion of
truly ignorable missing data were missing by design; in some years, Y, and Y3 were omitted
at random from one-third of the questionnaires, and in other years these measures were not
collected at all. Missingness rates for the three variables are shown in Table 1, and means
and standard deviations by year are shown in Table 2.
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Table 1. Missingness Rates (%) by Grade

Grade
5 6 7 8 9 10
DRINKING 2 24 24 33 35 44
POSCON 47 55 62 100 66 63
NEGCON 48 56 62 100 100 100

For one analysis, researchers wanted to fit linear growth curves to predict Y; from Y5,
Y3, and other important covariates including gender. This analysis was not a straightforward
application of a linear mixed-effects model because of the high rates of missing values on the
covariates Y, and Y3. We multiply imputed values for Y}, Y5, and Y3 under our multivariate
model, allowing the growth modeling to proceed with standard software. Our imputation
model specified linear trends over time with random slopes and intercepts for each of the
r = 3 variables, a fixed effect for gender, and a gender by time interaction. Each X; matrix
had p = 4 columns corresponding to an intercept, grade, gender, and gender x grade; and
each Z; had ¢ = 2 columns corresponding to intercept and grade. Notice from Table 2 that
both the average level of DRINKING and its variation increase dramatically over time. To
make the assumption of a constant residual covariance matrix > more plausible, reported
alcohol use was re-expressed as the logarithm of (DRINKING+5).

Because NEGCON is entirely missing for the last three years of the study, the likely
values of this variable for grades 8—10 are being inferred from two sources: extrapolation
from grades 5-7 based on the assumption of linear growth, and the residual covariances
among the three response variables which are assumed to be constant across time. Neither
of these assumptions can be effectively tested from the data at hand, so inferences pertaining
to NEGCON are heavily model-based.

4.2 MobE FINDING AND IMPUTATION

Prior to imputation, we examined alternative covariance structures using the estima-
tion procedures of Section 3.3. Despite the high rates of missingness, our EM algorithm
converged to a maximum relative parameter change of 0.0001 in only 104 iterations for
the unstructured-¥ model and 95 for the block-diagonal version. Without random effects

Table 2. Means (standard deviations) of Observed Variables by Grade

Grade
5 6 7 8 9 10
DRINKING —1.43 —-1.12 —0.57 0.09 1.29 1.97
(1.33) (1.96) (2.73) (3.47) (4.40) (4.78)
POSCON 1.30 1.34 1.48 — 1.84 1.96
(0.61) (0.62) (0.74) — (0.89) (0.91)
NEGCON 2.94 3.05 3.07 — — —

(0.76) (0.75) 0.77) — _ _
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Figure 1.  Convergence behaviors under different covariance structures.

(I = 0) EM again converged in approximately 100 steps. Values of the log-likelihood
for all iterations are plotted in Figure 1. The likelihood-ratio statistic for testing the block-
diagonal model against the unstructured alternative is 776.86; comparing this value to x?,
yields a p value of essentially zero.

In contrast to these EM algorithms, we anticipated that the Gibbs sampler of Section 2
would converge rather slowly, because that procedure augments the observed data by sim-
ulated random effects at each cycle. With only six occasions, the individual random slopes
and intercepts for Y], Y>, and Y3 are not well estimated; moreover, the large sample size
causes the augmented-data posterior distribution for W to become very tight, inducing a high
degree of correlation from one cycle to the next. To assess convergence, we ran our Gibbs
sampler for an initial 2,000 cycles using an unstructured ¥ and mild prior distributions; we
set vy = 3, Afl =33, v, = 6, and A;l = 60, where 3. and ¥ were obtained from EM.
Time-series plots and sample autocorrelations for the elements of W suggested that several
hundred cycles were needed for the dependence to die out. Based on this information, we
continued the Gibbs sampler for a total of 11,000 cycles, taking the simulated values of
Yhis stored at cycles 2,000, 3,000, ..., 11,000 as multiple imputations. Re-estimating the
autocorrelations from cycles 1,001-11,000, we verified that the dependence in the elements
of 6 had indeed died down by lag 200, so the ten stored imputations could reasonably be re-
garded as independent draws from P(Yps | Yobs)- Each 1,000 cycles required approximately
17 minutes on a 400 MhZ Pentium II workstation.
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Table 3. Estimated Coefficients, Standard Errors, Degrees of Freedom, and Percent Missing Informa-
tion From Multiply-Imputed Growth-Curve Analysis

est. SE df % missing
intercept —2.572 0.084 19 71
grade (1=>5th, ..., 6=10th) 0.386 0.011 35 53
sex (0O=female, 1=male) 0.370 0.046 324 17
sex x grade —0.105 0.013 88 33
POSCON 0.549 0.023 17 76
NEGCON —0.090 0.023 15 80

4.3 PoST-IMPUTATION ANALYSIS

After imputation, we analyzed the data by a conventional mixed-effects model for the
logarithm of (DRINKING+-5). The model was a version of (1.3) with fixed effects for
gender, grade, gender x grade, POSCON and NEGCON, plus random intercepts and slopes
for grade. ML estimates were computed from each imputed data set and combined using
Rubin’s (1987) rules for multiple-imputation inference for scalar estimands. Results of this
procedure are summarized in Table 3. The point estimates are simply the averages of the
ML estimates across the ten imputations. The standard errors incorporate uncertainty due
to missing data as well as ordinary sampling variability. The degrees of freedom shown
are the estimated degrees of freedom appropriate for hypothesis tests and interval estimates
based on a Student’s ¢-approximation. All coefficients are highly statistically significant.

Table 3 also displays the estimated percent rate of missing information for each estimand
as derived by Rubin (1987). The high rates of missing information indicate that inferences
for all coefficients (except sex) may be highly dependent upon the form of the imputation
model and the assumption of ignorable nonresponse. The latter assumption is not particularly
troubling for these data, because the majority of missing values are missing by design.
Certain assumptions of the imputation model, however—in particular, the assumed linear
growth for NEGCON and constancy of the residual covariances across time—are not really
testable from the observed data, so results from this analysis should be interpreted with
caution.

Despite these strong caveats, the estimates in Table 3 provide some intriguing and
plausible interpretations about the behavior of this cohort. The positive coefficient for sex
indicates that boys reported higher average rates of alcohol use than girls in the initial
years of the study. The negative effect for sexx grade, however, shows that girls exhibit
higher rates of increase than boys, so that the girls’ average overtakes the boys’ by grade
8. The large positive effect of POSCON indicates that increasing perceptions about the
positive consequences of alcohol use are highly associated with increasing levels of re-
ported use. The negative coefficient for NEGCON suggests that increasing beliefs about
negative consequences do tend to reduce levels of use, but the effect is much smaller than
that of POSCON. These results are consistent with those of previous studies (MacKinnon
et al. 1991) which demonstrated that perceived positive consequences may be influential
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determinants of substance-use behavior, but beliefs about negative consequences have little
discernible effect.

S. DISCUSSION

The algorithms developed here represent an important step in helping researchers to
analyze multivariate longitudinal or clustered data with missing values. If the dataset con-
tains only a few large clusters, the MCMC procedure described in Section 2 will converge
rapidly. With many small clusters the algorithm works very reliably but convergence may
be slow. The EM methods of Section 3 were designed specifically for many small clusters
and perform best in that setting.

It is straightforward to show that the multivariate mixed-effects model (1.1) implies a
conditional univariate model of the form (1.3) for each response variable given the others,
where the others are incorporated into the columns of X ;. Thus, the imputation procedures in
Section 2 are appropriate for longitudinal analyses with partially missing covariates, when
those covariates are later going to be incorporated into an analytic model as linear fixed
effects. In many studies, however, one would like to preserve and detect certain nonlinear
associations and interactions. For example, in the first analysis of Section 4, it would have
been interesting to see whether the association between POSCON and DRINKING may
have been increasing or decreasing over time; the imputation model, however, imputed
the missing values under an assumption of a constant POSCON x DRINKING association.
Extensions of the multivariate model to allow more elaborate fixed associations such as
POSCON x DRINKING x grade, or random associations such as POSCON x DRINKING
X subject, are an important topic of ongoing research.

Another limitation of our methods is that they currently allow only two levels of nesting.
Many studies involve multivariate longitudinal data that are clustered further into larger units
(e.g., repeated multivariate measurements on students within schools). Extending the Gibbs
sampler of Section 2 to accommodate additional levels of random effects is a simple matter,
but extending the scoring and EM procedures of Section 3 is not.

Another important limitation pertains to missing covariates at the subject or cluster
level, for example, non-time-varying covariates. If these covariates have no missing values,
they can be handled under the current model by simply moving them to the matrix X;. When
missing values are present, however, they should be explicitly modeled and imputed. More
specifically, let V; = (v;1,v42,- - - ,vik)T denote a set of variables describing unit ¢ that
appear in some form in the columns of X;. If one is willing to impose a simple parametric
distribution on V; such as multivariate normal, then Gibbs sampler given by (2.2)—(2.4) can
easily be extended in the following fashion. Given V;, the conditional distribution of y; is
be given by (1.1), and marginally the distribution of V; is a multivariate normal distribution.
Conditionally upon the random effects b;, the joint distribution for V; and y; is still a
multivariate normal with (y; — Z;b;) appended to the variables in V;.

Our model assumes that the rows of y; are conditionally independent given b; with
common covariance matrix X. In the univariate case, this assumption is commonly relaxed
by allowing a residual covariance matrix of the form o2V;, where V; has a simple (e.g.,
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autoregressive or banded) pattern with a small number of unknown parameters. Sensible
multivariate extensions of these patterned covariance structures produces models and al-
gorithms that are complicated even apart from missing data. For example, the obvious
extension of vec(e;) ~ N(0,(X®1,,)) to vec(e;) ~ N(0, (X ®V;) ) seems too restrictive
for many longitudinal datasets, because the response variables Y7, . . ., Y, would be required
to have an identical autocorrelations. Accounting for autocorrelated residuals in a plausible
manner may prove be a daunting task in the multivariate case. In many cases, apparent
nonzero correlations among the rows of ¢; may arise because of a misspecified model for
the mean structure over time. The problem may sometimes be reduced or eliminated by
including additional (e.g., higher-order polynomial) terms for time in the covariate matrices
X, or Z;.
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